De Nova Stella

Tycho Brahe
I. L. E. Dreyer (ed.)
Michael P. McLaughlin (trans.)

```
            TYCHONIS BRAHE, DANI
            DE
NOVAET NVLLIVS
    EVI MEMORIA PRIVS VISA
        Stella, iam pridem Annod nato CHRI=
            STO 1572. menfe Nouem.
            brjprimùmCon=
                fpecta,
    CONTEMPLATIO MATHEMATICA.
```

 Cui, prater exaflam E CLIP SIS L VN AR IS, buius \(\mathcal{A n n i}\),
 pragmatran, Et elegantem in VR ANI A M-Elegiam,E PISTO-
L A quog D E D IC ATO R I A acceßit: in qua, noua er erudita
confriberdi DIARIA METHEOROLOGICA Methodus,
Dtriufq, Aftrologia Studiofis, codem Autore, proponitur: Cuius, ad
bunc labentem annum, Exemplar, fingulari induftria elaboratum con-
frripfit, quod tamem, multiplicium Schematum exprimendorum,
quo totum ferme conftat, difficultate, edi,
bac vice, temporis angustia non
patiebatur.

H $A F N I A$,
IMPRESSIT LAVRENTIVS
Benedittj.
15730

De Nova Stella
Author: Tycho Brahe
Editor: I. L. E. Dreyer, 1913
Translator: Michael P. McLaughlin, April, 2023

This document produced using ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ and TeXShop.

Translator's Preface

This work consists of an English translation of De Nova Stella written by Tycho Brahe in 1573. The text used is that edited by Dryer [3, pp. 16-30]. It is not a complete translation; the prefatory dedications and discussion of astrology are not included. Also, no attempt was made to produce a literal translation. The guiding precepts were as follows:

- What was Tycho trying to say?
- The science must make sense.
- Good Latin deserves good English.

Nevertheless, the end result remains faithful to the original.
All footnotes are those of the translator as is anything inserted [in brackets]. In addition to the original text, material is included on the constellation Cassiopeia in which the nova appeared, the instrument Tycho used to observe it along with some retrospective analysis that Tycho carried out in later years.

TEXT AND TRANSLATION

DE NOVA ET NVLLIVS AEVI MEMORIA, A MVNDI EXORDIO PRIVS CONSPECTA STELLA, QUÆ IN FINE ANNJ SUPERIORIS OMNIUM PRIMO APPARUIT.

NNO præcedente, Mense Nouembrj, die eiufdem vndecimo, veโperi poft Solis occafum, cum meo more fidera colo fereno contemplarer, nouam quandam \& inulitatam, præque aliis admodum confpicuam, iuxta capitis verticem, animaduerti fulgere Stellam: cumque mihi, qui inde fere a pueritia, omnia cœlj fidera perfecte (non enim magna huic fcientiæ ineft difficultas) cognita haberem, fatis euidenter conftaret, nullam in eo colj loco vnquam antea extitiße, vel minimam, nedum tam confpicuæ claritatis ftellam: in tantam rei istius admirationem fum adductus, vt de fide, proprijs oculis adhibenda, dubitare, non puduerit. Cum vero $\&$ ab alijs loco monftrato confpici poße animaduertißem, ftellam reuera illic apparere, nullum mihi amplius mouebatur dubium. Miraculum fane inter omnia, quæ a mundi exordio, in tota rerum natura extiterunt, aut maximum, aut illi certe æquiparandum, quod in Solaris curfus retentione, Iosuæ precibus impetrata: vel eiufdem obfcuratione, tempore Victimæ cœleftis facta, contigiße facra te-||ftantur oracula. Omnibus enim Philofophis conftat, \& res ipfa non obfcure declarat, in ætherea coleftis mundi regione, nullam fierj alterationem generationis vel corruptionis: fed coelum \& quæ in eo continentur ætherea corpora, non augerj, non imminuj, non variari aut numero, aut magnitudine, aut lumine, aut quauis alia ratione: fed femper idem, fibique in omnibus fimile, nullis terentibus annis permanere. Teftantur infuper omnium artificum, millenis aliquot ab hinc elaplis annis, factæ obferuationes, ftellas omnes, eundem numerum, fitum, ordinem, motum, \& quantitatem, femper retinuiße, qualem nostra etiam ætate, ab ijs quos cœleftium rerum capit delectatio, obleruatione diligentj facta, feruare confpiciuntur. Nec vnquam ab vllo artifice antea obleruatum legimus, nouam aliquam in cœelesti mundo extitiße ftellam, nifi a folo Hipparcho, fi Plinio adhibenda eft fides. Hipparchum enim aliam a reliquis omnibus prius confpectis, fua ætate genitam animaduertiße ftellam, autor eft Plinius, Naturalis hiftoriæ libro fecundo: Cuius verba, cum vt in cœeteris, ita \& hoc in loco fint illuftria \& magnifica, non abs re duxi hic annotanda. Idem (inquit) Hipparchus, nunquam fatis laudatus, vt quo nemo magis approbauerit

Concerning Something New and Unprecedented Since Before the Beginning of the World: A Star Which First Appeared At the End of Last Year

AST year, on the eleventh of November, in the evening after sunset, while gazing at the stars in a clear sky, as per my custom, I noticed a new and unusual star shining brightly just above my head. To me who, almost since childhood, had known all the stars of the sky perfectly (for there is no great difficulty in this skill), it was quite evident that there had never been any in that place before or, at least, no star of such conspicuous brightness. In the event, I was led to wonder whether, indeed, I could trust my own eyes. In fact, it could be noticed by others that a star appeared in the place I pointed out so I no longer had any doubt. Of course, among all the miracles that have occurred in nature since the beginning of the world, the greatest, or nearly so, was that resulting from the prayers of Joshua in arresting the course of the Sun or by the obscuration of the same. Occurring at the time of the heavenly Sacrifice, sacred oracles bear witness to the fact that it happened.

All philosophers agree, and the very fact makes it plain, that, in the ethereal region of the heavenly world, no modification of creation or corruption takes place. Rather, heaven and the ethereal bodies which are contained therein are not increased, nor diminished, nor varied either in number, or in size, or in magnitude, or in any manner but continue to stay the same in every way over the years. Moreover, observations made by all experts, over thousands of years gone by, assert that stars have always maintained the same number, position, order, motion and quantity, even in our own time by those who take delight in heavenly things. Nor have we ever read that any new star was ever observed in the heavenly world by any expert unless Hipparchus if Pliny is to be believed. For Pliny, in his second book of Natural History, says that Hipparchus observed that a star different from all others appeared in his own time. And his words, here and elsewhere, are illustrious and magnificent. He says of Hipparchus, "He was never sufficiently praised
bauerit cognationem cum homine fiderum, Anima/que noftras partem effe cœli, nouam Stellam \& aliam æuo fuo genitam depræhendit, eiufque motu, qua die fuljit, ad dubitationem eft adductus, anne hoc fæpius fieret, mouerenturque \& eæ, quas putaA 2^{r} mus affixas. Idemque aufus rem etiam Deo improbam, || annumerare pofteris ftellas, ac fidera ad normam expangere, organis excogitatis per quæ fingularum loca \& magnitudines fignaret, vt facile ex eo difcerni polfet, non modo an obirent, nafcerenturue, item an crefcerent, minuerenturue. Cœlo in hæreditate cunctis $10+$ relicto, $\sqrt{1}$ quifpiam qui rationem eam caperet, inuentus effet. Hæc Plinius. Licet vero illa Plinij verba non obfcure teftentur, Hipparchum veram stellam in ætherea regione, fuo æuo genitam depræhendiße, \& hac occafione reliquarum omnium loca, inftrumentis debitis (quod nullus ante ipfum præftitit) fignaße, vt pofteri fcirent an fæpius hoc metæ alicuius apparitionem detorquere, rei potius incredibilitate, \& omnium Philofophorum refragante iudicio, quam autoris fententia eo perductus. Quam enim perperam, de Cometa, hunc locum Plinij interpretatus fit, nemo refragabitur, qui penitius citata Plinij verba inrum in omni fcientiarum genere excellentem, præque aliis in Mathematicis fummum artificem, non fciuiße melius inter veras æthereæ regionis stellas, \& aëris igneum Meteoron, quod Cometam vocant, difcernere, quam vt per hanc occafionem omnium affixorum fiderum 5 catalogum \& litum, diuino potius quam humano labore, pofteris relinqueret. Vt taceam, quam ridiculum fit, quod idem Plinij commentator, ex verbis prædictis aßerat, Hipparchum per iftius Cometæ moA $2 v$ tum (Cometam enim fuiße hanc stellam opina-||tur) stellarum fixarum fitus, \& motum, deprehendiße, cum omnium Cometarum curfus fit
30 enormis, inftabilis, celer, \& vagabundus: ftellarum vero in octauo orbe affixarum motus regularis, certus, vniformis, adeoque lentus, vt vnius hominis ætate vix progredi animaduertantur. Hæc non vllo carpendi ftudio commemoro. Non enim eft candidj \& ingenui ingenij, aliorum labores deprauando calumniarj: fed monere faltem volui, ne alij, hu-
35 ius interpretis, viri docti autoritate freti, ad Cometæ alicuius, \& non veræ stellæ apparitionem, Plinium detorquerent. Mihi fane dubium non eft, Plinium per hæc verba fignificaße, Hipparchum veram stellam \& genuinam in cœlo, fuis temporibus primum natam, deprehendiße: Alias enim nec ipfe quicquam noui, aut admiratione dignum,
40 de tanto viro retulißet, cum Cometæ crebrius confpiciantur, \& a quouis etiam Mathematum imperito animaduertantur. Quæ autem \& qualis hæc fuerit, \& an rurfus euanuerit nec ne, quoniam ex Plinij
and no one knew more than he about the stars. He understood our souls to be a part of heaven and that, given another new star born in his age and given its motion, shining brightly on that day, was led to doubt that this would happen more often and that those which we consider fixed would also move. Thus, it was an audacious undertaking, even to God, to enumerate the lesser stars as well as standardize the constellations and, with these instruments, record the places and sizes of each, not only whether they were born or died but whether they grew or diminished, so that they could be easily distinguished from it. Heaven was left as an inheritance for all. For anyone who could make use of it, it would have been available." So spoke Pliny.

It is safe to say that these words of Pliny are not obscure. Hipparchus did perceive a real star in the ethereal region, born at that time and, on this occasion, recorded the positions of all the rest with the necessary instruments (which no one had done before him) so that posterity might know whether this could be done more often. Nevertheless, Milchius [Jacob Milch], a commentator on Pliny, did not hesitate to misconstrue it as the apparition of some comet, given the incredibility of the event and the opposing judgment of all the Philosophers, rather than accept the author's opinion. How incorrectly interpreted this passage of Pliny, as implying a comet, no one who scrutinizes the quoted words of Pliny will dispute. And how absurd it is to assert that Hipparchus, a man excelling in every kind of science and more expert in mathematics than anyone else, did not know how to distinguish between the true stars of the ethereal region and the fiery meteor of the air which they call a comet or that, on this occasion, the catalog and position of all the fixed stars would have been left to posterity by divine rather than human labor. Not to mention how ridiculous it is that the same commentator of Pliny asserted, from the foregoing words, that Hipparchus had detected the position and motion of the fixed stars by means of this very comet (for he thinks that this star was a comet), since the course of all comets is irregular, unsteady, rapid and wandering. Indeed, the motion of the fixed stars in the eighth sphere is regular, certain, uniform and so slow that they are scarcely observed to progress during the age of one man.

I do not mention these things with any intention of taking them up myself. For it is not for a pure and honest person to slander by distorting the labors of others. But I wished at least to provide a warning lest others, relying on the authority of this learned man, of this interpreter, should misconstrue Pliny as the appearance of some comet and not of a true star. I have no doubt that Pliny meant by these words that Hipparchus had discovered a true and genuine star in the sky, the first born in his time. In other respects, neither he himself nor I knew anything, or anything worthy of respect, of such a man as he had described, when comets are more frequently seen and noticed even by those unskilled in mathematics. But what this was and what it was like, and whether it disappeared again or not,
verbis colligi non poteft, in dubio relinquimus. Nec fimile quidpiam, vel ante Hipparchi tempora, vel etiam poft, annis iam elapfis mille〔eptingentis, ab vllo artifice (vt dixi) โæpius obferuatum eße legimus, priufquam hac nostra ætate, illa, de qua nunc fermonem instituimus, confpici cœepit. Quod vero illa, neque fit in Elementari \& aërea mundi regione apparens igneum aliquod meteoron: fed inter cœlestes orbes locum obtineat, poftea demonftrabimus. Apparet itaque quam fit hæc|| res inufitata, quam admiranda, quam denique omnibus Philofophis A 3^{r} incredibilis, nouam \& aliam a prioribus nunc demum in coelo prodijße ftellam. Nec Theologis, qui alias multa in mundano orbe miraculofe contingentia, per diuina mysteria exculare poßunt, fufficientes reddere caufas eius rej, poßibile exiftimo. Illis enim per Mofis de mundi fabrica historiam, compertum eft, Deum autorem Vniuerfi, ex quo cœlos \& Elementa, cum omnibus fuis ornatibus abfoluißet, quieuiße ab omni opere, nec vllam poftea rerum nouam condidiße \{peciem. Scio tamen aliquos ex occultiori quadam, \& noftro fæculo primum in lucem producta Philofophia aßerturos, poßibile eße hanc ftellam in veteri Iliado (libet enim eorum vocabulis vti) hactenus latitaße, \& nunc demum maturatione fui abfoluta, mortalibus confpiciendam prodijße. Etfi vero nunc non difputem de huius nouæ (vt putatur) Philofophiæ certis vel ambiguis fundamentis: \& non ignorem, ex illa, multarum in Natura abftrufarum rerum, \& a vulgaribus Philofophis vel incognitarum, vel minus recte intellectarum, caufas \& progreffus explicari poße: tamen mihi verofimile eße, vt hoc miraculum ea ratione fufficienter faluetur, vix perfuadebitur. Nam fi huiufmodi in cœlo (quod illi quartum \& igneum Elementum, non dubitant, fuis ducti rationibus, appellare) fierent generationes, cur non fæpius tot elaplis feculis, in tanta colj valtitate, animaduerfum est noua prodire fidera? Et cur illa quæ hactenus apparu-\|erunt nullam inde a mundi A 3° exordio, magnitudinis, luminis, coloris, vel ordinis perpeßa funt alterationem? Id enim in tanto temporis interuallo, \& tanta fellarum copia, fieri oportebat, fi cœlo eiufmodi competeret generationis \& cor-
 noui: taceant ipfi quoque Diuinorum Myfteriorum interpretes Theologi: taceant colestium corporum contemplatores Mathematici, nec de modo generationis huius ftellæ \& tanti miraculi exculatione, fe aliquid certi conftituere poße exiftiment. Nec eft quod aliquis fibi perfuadeat, hanc stellam fimilem eße illi, quæ Magis Orientalibus, cum Saluator mundj nalceretur, apparuit. Illa enim non in colo inter reliquas ftellas: fed in ima aëris regione, non procul a fuperficie terræ locum obtinebat. Alias enim nec motu fuo, iter, Saluatorem quærentibus, nec quiete, domum in qua inueniretur, oftendißet. Sed cum toto cœlo
since this cannot be gleaned from Pliny, we leave in doubt.
Nor have we read that anything similar was ever observed by any expert (as I said), either before or after the time of Hipparchus, not even after seventeen hundred years, prior to this age of ours, of which we now speak, when something began to be seen. In truth, there be not any fiery meteor appearing in the elemental and aerial region of the world but, as we shall show later, among the celestial spheres. It shows, therefore, how unusual this thing is, how surprising, how unbelievable to all philosophers, that a new star, different from those preceding, should now appear in the sky. Nor can theologians, who are otherwise able to excuse many miraculous happenings in the mundane sphere as divine mysteries, account for the causes of this thing except as a possible anomaly. For through Moses' history of the creation of the world, it was discovered that God, the author of the universe, having finished preparing the details of the heavens and the elements, had rested from all work and had not afterwards created any new species in the world.

I realize that some from a more occult philosophy, first disclosed in our time, will assert that it is possible that this star in the old Iliad (for I like to use their terms) has been hidden until now when, brought forth at the time of its ultimate maturity, it has finally become visible to mortals. Now, I will not discuss the bases of this (supposedly) new philosophy, whether certain or doubtful, and I am not unaware of the possibility that it might explicate the causes and behavior of many things in nature which are obscure and which are either unknown or much less understood by common philosophers. However, it seems to me that such a miracle is scarcely plausible. For, if generations of this sort (which, by their thinking, they do not hesitate to assign to the fourth, fiery Element) were to take place in heaven, why was it not more often, after so many centuries, in the vastness of heaven, that new stars were observed to appear? And why have those which have hitherto appeared since the beginning of the world undergone no alteration in size, light, color or arrangement? For, in so great an interval of time, this should have occurred with a great number of stars if the heavens were characterized by this sort of generation and corruption. Therefore, let all philosophers, old or new, be silent. Let the theologians, the interpreters of the Divine Mysteries, also be silent. Let the mathematicians who contemplate the heavenly bodies be silent and not offer excuses for the generation of this star or of so great a miracle with the pretense of something certain. Nor need anyone convince himself that this star is like that which appeared to the Magi when the Savior of the world was born. For that occurred not in heaven among the rest of the stars but in the lowest region of the air, not far from the surface of the Earth. For anyone other than those seeking the Savior, neither by its own movement, nor by its journey nor its subsequent repose would it have opened the door of the house in which He was to be found.
cœelo circumuoluta, nullum habuißet tam exigui fpacij in orbe terreno reโpectum: cum tota terra, cœlo collata, non habeat fenfibus incurrentem magnitudinem. Adde quod illa ftella folis Magis ab oriente profectis, vt Dominum adorarent, illique tanquam Regi, Deo, \& Ho5 minj, munera, Aurum, Thus, Myrrham offerrent, apparuit: fiue quod Deus peculiariter eorum mentes \& oculos illuftrauerit, vt illj a longinqua \& ignota regione venientes, eum agnofcerent, per quem omnia facta funt, humanam induiße naturam, quem proprij Iudæj, inter quos A4r nalcebatur igno-\|rabant: fiue quod hi fapientes homines, per occulti-
10 oris \& incognitarum rerum indagatricis Magiæ cognitionem, ea viderint \& intellexerint, quæ reliquis hominibus, huius fcientiæ ignaris, occulta erant: vnde etiam non immerito Magorum appellationem in facris literis fortitj erant. Sed qualis ea fuerit stella, quæ illis apparuit, non eft huius loci fcrupulofius indagare, cum ipfis etiam Theologis, ob Magiæ ignorantiam, nihil in hac re certj conftet. Sufficit enim demonftraße hanc nouam \& inufitatam stellam, quæ nuper apparuit, nullam habere cognationem cum illa, quæ Magis confpiciebatur: nec poße eius generationis modum faluarj, vel a Theologis, vel a Philofophis, nec ab iplis etiam Mathematicis. Reliquum igitur eft, vt statuamus Dei totius Machinæ mundanæ opificis, admirandum hoc eße Oftentum, præter omnem naturæ ordinem, a feipfo in initio conftitutum: nunc demum adue〔perafcenti mundo exhibitum. Diuina enim maieftas liberrime agit, nec vllis obftricta eft Naturæ vinculis, fed cum vult, fiftit aquam fluuiis \& vertit fidera retro.

Hæc potuit Solis currus inhibere volantes, Cum populi Ifraël dux Iofue fterneret hoftes.
Hæc potuit Solis fine Luna, extinguere Iumen, Cum fuus est factus pro nobis victima Gnatus.
Quapropter etfi de hoc nouo \& nunc primum nato fidere, aliqua in
$\mathrm{A} 4^{v}$ medium adferre conftituerim: tamen de $\|$ eius generatione, \& quibus rationibus extiterit, me nihil affirmare poße, ingenue fateor: fed folum
ea, quæ ad Mathematicam confiderationem §pectant, excutiam.
Dicam enim de eius, quo ad fixas \& Zodiacj longitudinem,
latitudinemque pofitu: de iplius a Terra, centro
Vniuerfi, remotione: nec non de eiuldem magnitudine, lumine, \& colore:
quibus etiam de huius stellæ
effectibus, ab Aftrologia
petitas coniecturas
40 fubiungam.

3*

For, surrounded by the whole of heaven, so small a space in the earthly world would have garnered no respect for, compared to the heavens, the whole Earth has a size that is insensible. In addition, that solitary star of the Magi, having gone forth from the east, appeared there so that they might worship the Lord, offering gifts of gold, thyme, and myrrh to the King, to God and to man, or that God especially enlightened their minds and eyes so that, coming from that distant and unknown country, they recognized Him by whom all things were made as having put on a human nature of which his own Jews, among whom he was born, were ignorant and that these wise men, through knowledge of the occult and unknown things, by the investigation of magic, saw and understood those things which were obscure to other men, ignorant of this knowledge. Whence, in the sacred literature, they deserved to be called Magi. But, for the needs of this work, it is not necessary to investigate what kind of star it was that appeared to them since even the theologians themselves, owing to their ignorance of magic, are not certain about this matter. It is enough to have demonstrated that this new and unusual star which has lately appeared to have no relationship to that of the Magi nor can the manner of its generation be explained by theologians or philosophers, not even by mathematicians. Consequently, we are left to conclude that this marvelous portent, distinct from the natural order, was fabricated by God, the artificer of the entire worldly machine, from the very beginning and now, at last, exhibited to the world as evening approached. For the divine majesty acts very freely and is not bound by any bonds of nature but, when it wills, it halts the water of the rivers and makes the stars go backward.

Thus could the flying chariot of the Sun be checked,
When Joshua, the leader of the Israeli people, defeated his enemies.
Thus could the Sun, without the Moon, extinguish its light, As the Son was made a sacrifice for us.

For this reason, although I have decided to focus on this new and nascent star, I frankly confess that I cannot affirm anything about its generation and for what reasons it would have existed but shall address only those topics that pertain to the domain of mathematics. Thus, I shall speak of its longitude and latitude position relative to the the fixed stars and the Zodiac, of its distance from the Earth as well as its size, brightness and color. Also, regarding the effects of this star, I shall submit the predictions of astrology.

DE HVIVS NOVÆ STELLAE IN CCELO, QVO AD FIXAS POSITU, \& IPSIUS QUO AD ZODIACUM, LONGITUDINE \& LATITUDINE.

ONSPICIEBATUR hæc recens nata stella in Borealj 5 cœlj plaga, verfus polum Arcticum, iuxta constellationem, quam veteres Magi Caßiopeam appellarunt, vicina paruæ istj stellæ, quæ eft in Cathedræ medio loco, modicum ab ea verfus Cepheum remota. Conftituebat etiam cum fuprema Cathedræ, \& ea quæ in pectore Schedir appellatur, eaque quæ iuxta incuruationem ad ilia tendit, figuram quadrilateram. Sed vt tota res melius cognofcatur, præcipuas stellas fideris Caßiopeæ, vnâ cum huius nouæ ad illas pofitu, oculis fubijciam.

Distantiam

Concerning the Longitude and Latitude Position of this New Star in the Sky Relative to the Fixed Stars and the Zodiac

HIS newly born star was visible in the northern part of the sky, towards the Arctic pole, near the constellation that the ancient Magi called Cassiopeia and in the vicinity of the small star that is in the middle of the chair, a little distant from it towards Cepheus. Also, it formed a quadrilateral figure with the top of the chair and that which is called Schedir in the breast and the one that makes the bend. ${ }^{1}$ But, in order that the whole matter may be better understood, I will present to the eyes the principal stars of the constellation Cassiopeia together with the relative position of this nova.

[^0]Distantiam vero huius stellæ a fixis aliquibus in hac Caßiopeiæ constellatione, exquifito inftrumento, \& omnium minutorum capacj, aliquoties obleruaui. Inueni autem eam diftare ab ea, quæ eft in pectore, Schedir appellata B, 7. partibus \& 55. minutis:
B2 r a fuperiori\| vero Cellæ G, partibus 5, minutis 21: a flexura denique, \& ea, quæ iuxta ilia D, 5 partibus minuto 1. Ex his distantijs huius nouæ stellæ a dictis fixis, ipfius locus incidit, quo ad longitudinem in $7 \mathrm{G}: ४$, cum latitudine Septemtrionalj 54 fere partium, paucißimis per duas vltimas distantias, a flexura videlicet, \& fuprema Cathedræ innotuit. Nam \mathbb{I} harum duarum fixarum loca, fecundum longitudinem \& latitudinem nota, præfupponamus, non latebit fcientiæ triangulorum §phæricorum gnaro, noui fideris ab æquinoctio verno in longitudinem, \& ab Eccliptica in latitudinem remotio. Sint enim euidentioris de-
 monstrationis gratia, in fequentj figuratione, duæ stellæ fixæ fideris Caßiopeiæ A \& B: quarum A fit illa in Cathedræ parte fuperiore, quam alij in afcenfu medio collocant: B vero illam, quæ in flexura eft, iuxta ilia, reprefentet: C autem locus nouæ stellæ, \& A C, arcus distantiæ eius a fuprema Cathedræ: CB , arcus inter hanc \& flexuram interceptus: \& A B, arcus intercapedinis vtriufque fixæ. Sit infuper G polus Zodiacj Boreus, a quo duo quadrantes defcendant in Eclipticam, per prænominatas fixas in A \& B politas: per A quidem G D: per B vero GF. Erit itaque DF arcus Ecclipticæ dirimens vtriufque fixæ longitudinem, \& A D, atque B F, arcus latitudinum earundem fixarum. Pari ratione a polo Zodiacj, per locum nouæ stellæ in C politæ, \| B2 ${ }^{v}$ ducatur quadrans in Eclipticam, quæ hîc GE erit. Itaque E locus longitudinis nouæ stel-
 $1 æ, \& D E$ arcus differentiæ longitudinis huius a priori fixa in A polita: C E vero arcus latitudinis, feu remotionis iplius ab Ecliptica. Præfupponantur autem loca longitudinis \& latitudinis Fixarum, qualia Copernici abacus, adiecta æquinoctij preceßione, indicat, vt fit longitudo prioris

Indeed, I have observed the distance of this star from the fixed ones in the constellation of Cassiopeia several times with a very precise instrument, capable of every detail. I found that it is 7 parts 55 minutes distant from that which is in the chest, B, called Schedir, 5 parts 21 minutes from the top of the chair, G, and, finally, 5 parts 1 minute from the flexure and those near it, D.

From these separations of this new star from the fixed locations described, its location falls at a longitude of 7 degrees of Taurus with a latitude of about 54 parts North, neglecting a few minutes. This is made known especially from the latter two separations, namely, from the flexure and the top of the chair. For, if we assume the locations of these two fixed points, in longitude and latitude, then the distance of the new star from the vernal equinox in longitude and from the Ecliptic in latitude will be apparent from a knowledge of spherical triangles.

For a clearer demonstration, in the adjacent figure, let A and B be two fixed stars in the constellation Cassiopeia. where A is in the upper part of the chair and which others place in the middle of the upright. B , on the other hand, will represent that which is next to the flexure. Let C be the place of the new star and AC the arc of its separation from the top of the chair. CB is the arc connecting the latter $[\mathrm{C}]$ and the flexure while AB is the arc between the two fixed stars. Moreover, let G be the North pole of the Zodiac from which two quadrants descend to the Ecliptic, through the aforesaid fixed points at A and B, that is, GD through A and GF through B. Therefore, DF will be the arc of the Ecliptic terminating the longitude of both fixed points and AD and BF will be the arcs of the latitudes of the same fixed points. In the same way, from the pole of the Zodiac through the location of the new star at C a quadrant is drawn to the Ecliptic, which here will be GE. Therefore, E is the locus of the longitude of the new star and DE is the arc of the difference in longitude of this one and the fixed one at A. Hence, CE is the arc of latitude
 or the distance [of C] from the Ecliptic. But, according to the computation of Copernicus, locations of fixed longitude and latitude are supposed to be added to the precession of the equinoxes, indicating that the longitude of
prioris stellæ A in 29. G. O. M. ab æquinoctio verno, idque in puncto D, cum latitudine boreali 51. G. 40. M. quam reprefentat (vt dixi) arcus A D. Longitudo autem pofterioris in B pofitæ, fit in 7. G.50. M. ૪. Idque in puncto F, cum latitudine boreali 49 . G. 0. M. quam defignat arcus BF. Hinc lubet indagare arcum DE, quantum videlicet E longi-\| tudo nouæ stellæ excedat longitudinem fixæ in A politæ, quæ eft in B3r $\mathrm{D}, \mathrm{vt} \mathrm{E}$ locus longitudinis nouæ stellæ, in Eccliptica cognofcatur. Libet etiam hinc arcus CE quantitatem indagare, vt innotefcat etiam huius nouæ stellæ ab Ecliptica remotio, quam latitudinem vocant. Verum vt in horum noticiam per triangulorum Sphæricorum โcientiam, debito proceßu peruenire liceat, confidero omnium primo Triangulum A G B, cuius bina latera in G polo iuncta, nota funt, per complementa latitudinum fixarum G A, \{cilicet 38 . G. 20. M. G B vero 41 . G. 0. M. Eft etiam angulus, quem dicta latera comprehendunt notus. Illum enim metitur arcus D F, differentia videlicet longitudinis vtriufque fixæ, quæ eft $8 \mathrm{Gra}$.50 . M. Vnde per vigelimam octauam propofitionem libri quarti, Iohannis Regiomontani, de triangulis [phæricis, arcus A B innote [cit, quem inuenimus 6. partium cum ${ }^{1 / 4}$, qualem etiam per inftrumentum, capiendo vtriufque fixæ diftantiam, obferuaui. Habet itaque nunc dictum Triangulum A G B omnia latera nota: vnde per vltimam propofitionem libri quarti Regiomontani de Triangulis, vel tertiam libri quinti eiuldem, Copernici vero de ijfdem decimam tertiam, Angulus B A G manifeftabitur. Inueni autem hunc angulum, abfoluta operatione numerorum, iuxta dictas propofitiones, partium III. Minutorum 46. Nunc etiam pari ratione angulum Tri- 25 anguli CAB, qui eft ad A, dimetiar: nam \& omnia huius || latera nota B3v funt ex antecedentibus, C A part: 5 Minutorum 21: C B, 5 Part. 1 Min. A B 6. Par. 15 Min. Euadit igitur Angulus C A B, per dictas propofitiones, partium 49. Minu. 52. Hunc angulum ab angulo B A G prius inuento, aufero, tanquam partem de fuo toto, \& relinquitur quantitas anguli C A G, partium 61, Minu. 44. Nunc progredior ad Triangulum C A G, cuius Angulus, qui ad A, iam innotuit: duo vero latera dictum angulum comprehendentia G A \& A C, ex fuperioribus nota funt. Quapropter beneficio 28 propofitionis libri quarti Regiomontani de Triangulis, reliquum latus G C innotefcet, partium videlicet 38 Mi nut: 4. Erat autem arcus G C, complementum latitudinis nouæ stellæ. Vnde fublato eo, a Quadrante, vera stellæ latitudo, partium 53 Minut: 56 euadit: quantitas videlicet arcus CE. Pro longitudine vero huius stellæ indaganda, anguli D G E, quantitatem per omnia latera Trianguli G A C, iam cognita, dimetior, iuxta operationem propolitionis 34 libri Quarti, vel tertiæ libri Quinti Regiomontani de Triangulis. Inuenio autem dictum angulum part: 8 , \& minuti vnius. Hunc vero angulum
the former star, A , is 29 degrees 0 minutes from the vernal equinox and that point D , with a latitude of 51 degrees 40 minutes North, which (as I said) gives the arc AD. As for the longitude of the latter, B , let it be at 7 degrees 50 minutes of Taurus. And that at the point F, with latitude of 49 degrees 0 minutes North, is designated by the arc BF. Hence, it is desirable to determine the arc DE , showing by how much E , with the longitude of the new star, exceeds the longitude of the fixed one placed at A, which is at D, so that E gives the longitude of the new star in the Ecliptic. I would also like to determine the amount of the arc CE from here so that the distance of this new star from the Ecliptic, which they call the latitude, may also be known. But, in order that we may arrive at the determination of these through the knowledge of spherical triangles, by due process, I consider first of all the triangle AGB, the two sides of which are joined at the pole G and are known by the complements of the fixed latitudes GA, namely 38 degrees 20 minutes and GB 41 degrees 0 minutes. It is also known, being an angle enclosed by two sides. The arc DF is measured for them, namely the difference of the fixed length of both, which is 8 degrees 50 minutes. Hence, from the twenty-eighth proposition ${ }^{2}$ in the fourth book of John Regiomontanus on spherical triangles, the arc AB is known and found to be $6 \frac{1}{4}$ parts which I also observed by means of an instrument, taking the separation of the two fixed points.

Thus, the aforementioned triangle, AGB, has all its sides known. Hence, by the last proposition ${ }^{3}$ of the fourth book of Regiomontanus on triangles, or the third ${ }^{4}$ of his fifth book, and the thirteenth ${ }^{5}$ of the same of Copernicus, angle BAG will be manifested. I found this angle, by the perfect operation of numbers, according to the propositions cited, as 3 parts 46 minutes. Now also, by a similar calculation, let me measure the angle of the triangle CAB , which is at A , for all the sides of this are known from the preceding: CA, 5 parts 21 minutes, $\mathrm{CB}, 5$ parts 1 minute, $\mathrm{AB}, 6$ parts 15 minutes. Therefore, from the referenced propositions, angle CAB is 49 parts 52 minutes. From angle BAG previously found, I compute it as a part of the whole with the difference, CAG, being 61 parts 44 minutes.

Now I proceed to triangle CAG whose angle, at A, is already known since the two sides of the target angle, comprising GA and AC, are known from above. Therefore, utilizing proposition 28 in the fourth book of Regionmntanus on triangles, the remaining side of the GC will be known, namely, 38 parts 4 minutes. Hence, arc GC, the complement of the latitude of the new star. When measured using a quadrant, the true latitude of the star, namely, arc CE, was 53 parts 56 minutes. But, for the longitude of this star to be determined, angle DGE, already known from all the sides of the triangle GAC, I did the computation using proposition 34 of the fourth book or the third of the fifth book of Regiomontanus on triangles. I found said angle to be 8 parts 1 minute.

[^1]angulum metitur arcus DE, differentiam longitudinis nouæ stellæ a longitudine prioris fixarum reprefentans. Quapropter adiecto hoc arcu, partium, vt dixi, 8 \& 1 Minuti ad longitudinem prioris fixæ, quam aßumplimus eße in $29 \mathrm{G}, 0 \mathrm{Min} . \vee$, euadit locus longitudinis ||
B4. nouæ stellæ in 7. G Ø \& Min: 1. Latitudinem habens ab Ecliptica fupra inuentam 53 Part: 56. Minu. quod erat demonstrandum. Hac itaque ratione, locum longitudinis \& latitudinis huius noui fideris, beneficio doctrinæ Triangulorum infallibilj methodo inquifiuimus. Proceßum vero operationis, in inquirendis angulis \& lateribus Tri10 angulorum quibufue iam commemoratis, iuxta citatas huius doctrinæ propofitiones, non eft huius loci plenius explicare, tum quod prolixius, \& nimis perplexum fieret hinc totum negotium. Bona enim pars propolitionum libri quarti Regiomont. in hoc opere abfumitur, eo quod omnes, more Geometrico catenatim cohæreant: tum etiam quia diui5 nior \& excellentior fit Triangulorum โphæricorum cognitio, quam fas fit eius myfteria omnibus propalare. Licet vero non ignorem stellarum octaui orbis loca, non eße fatis exquifite cognita, vnde fierj potelt quod loca fixarum, quibus in hac demonftratione tanquam fundamento vfi fumus, non præcife eum, quem aßumplimus habeant longitudinis \& latitudinis locum, quapropter locus huius nouæ £tellæ, etiam paulo aliter forte constituendus eßet, tamen quia ipfemet in harum fixarum locis, nihil certi obferuatum habeam, noluj a Ptolomæj \& Copernici annotatione recedere. Quin potius, cum illis, quam Alphonfina farragine fentire, eo quod obferuatione crebra didicerim, Copernici motus propius cœlo accedere, quam aut Alphonfinas aut vllas alias cœeleaßignatum, \& beneficio cæterarum fixarum inuentum, non multum a vero aberrare, \& dabo operam, fi Deus vitam prorogauerit, vt loca fixarum ex propria obferuatione aliquando emendata, in communem Aftronomorum vtilitatem publicentur.
Ex hac inuenta huius Nouæ stellæ longitudine \& latitudine, ipfius etiam declinationem, fiue quod idem eft, ab Æquatore remotionem minimam, beneficio fphæralium Triangulorum, inueni Part: 61 Min: 58. Quemadmodum per inftrumentum etiam oculari obferuatione 35 facta, illam eiuldem exquifite quantitatis inueni. Pari quoque ratione ex nota declinatione \& longitudine data, eius afcenfionem rectam inquifiui G. 0. M. 22. Vnde hæc stella cum 20. Min. primi Gradus V. cœlum culminat, cum verticj proxima eft: \& cum totidem ϱ, denuo Meridianum tranfit Horizonti vicina. Eft itaque locus eius circulo, quem Colurum Æquinoctiorum vocant, ferme coincidens: idque iuxta limites viæ lacteæ, Caßiopeiæ, \& Cepheo interiectos. Verticalis autem eft illis in terra locis, quæ eleuationem poli Arcticj 62. G. minus 2. M. habent.

But this angle is measured by the arc DE , being the difference in the longitude of the new star from the longitude of the former fixed one [A]. Accordingly, adding this arc of 8 parts and 1 minute, as I said, to the longitude of the former fixed [A], which we assumed to be at 29 degrees 0 minutes of Aries, the longitude of the new star turns out to be at 7 degrees 1 minute of Taurus. It can be shown, from the above, that its latitude from the Ecliptic is 53 parts 56 minutes. In this manner, therefore, we investigated the place of longitude and latitude of this new star, using an infallible method in accordance with the doctrine of triangles.

However, here is not the place to explain more fully the sequence of operations required for investigating the angles and sides of the triangles already mentioned, according to the referenced propositions of this doctrine, as the whole business would become more lengthy and too complicated. ${ }^{6}$ For a good part of the propositions in the fourth book of Regiomontanus, it is assumed, in the present work, that all are linked together in a geometric fashion and also because knowledge of spherical triangles be more divine and excellent than is proper to reveal its mysteries to all.

Although I am not unaware that locations in the eighth world are not known with sufficient precision whence it may be that the locations of the fixed stars that I used in this demonstration have not precisely the latitude and longitude that I assumed so that the location of this new star might be somewhat in error, nevertheless, since I myself have not observed anything certain for these fixed locations, I shall not depart from the data of Ptolemy and Copernicus. Much better to agree with them than the hodgepodge of the Alphonsine [tables]. As I had learned by frequent observation, the Copernican motions come nearer to heaven than either the Alphonsine or any other tables of celestial motions. But I trust that the place of this star assigned by us, and found with the benefit of the other fixed points, will not deviate much from the truth and I shall do my best, if God prolongs my life, to publish the places of the fixed points, sometimes corrected from my own observation, for the common benefit of astronomers.

From this determination of the longitude and latitude of this new star, I also found its declination or, what is the same, the smallest distance from the Equator, by virtue of spherical triangles, to be 61 parts 58 minutes. With a precise instrument and with an observation by eye, I found it of the same exact size. In the same manner, given the known declination and longitude, its right ascension was found to be 0 degrees 22 minutes. Thus, this star, with 20 minutes of the first degree of Aries, culminates in the sky when it is near the vertical and, by the same amount, Libra transits the meridian close to the horizon. ${ }^{7}$ Its place therefore is nearly coincident with the circle that they call the Equinoctial Colure and near the limits of the Milky Way, in between Cassiopeia and Cepheus. But it is vertical for those places on Earth that have a North pole elevation of 62 degrees minus 2 minutes.

[^2]habent．Tanta enim eft stellæ（vt dixi）declinatio．Atque hæc de nouæ illius stellæ pofitu，tam quo ad fixas，quam quo ad Ecclipticæ longitu－ dinem et latitudinem，ipfumque Æquatorem，fufficienter，\＆dicta \＆ demonftrata eße arbitror．Hunc autem pofitum feruauit toto tempore， ex quo illam primo con〔peximus，nec vllo minuto（〔æpenumero facta diligenti obleruati－\｜one）hinc progreßa eft，elaplis iam menfibus fex．C Quapropter in pofterum etiam eodem in loco permanfuram，nec vllo alio motu proprio，quam stellarum fixarum，communi octauæ 〔phæræ， progreßuram auguror．

DE SITV EIVS，QVO AD MVNDI

DIAMETRVM，ET DISTANTIA A TERRA CENTRO VNIUERSI．

RDUUM eft，fubtilique indiget ingenio，ftellarum a no－ bis indagare remotionem，propter incredibilem earum a terra diftantiam：nec vlla ratione commodius \＆certius id preftari poteft，quam per paralaxeos，fi quam habent， menfuram．Si enim stella aliqua horizonti vicina，alio in loco cernatur，quam vbi altißima vertici appropin－ quat，neceßarium eft eam reperirj in aliquo orbe，refpectu cuius terra〔enfibilem habeat magnitudinem．Quam vero longe remoueatur dictus orbis，paralaxeos quantitas femidiametro terræ collata，manifeftabit． Sin vero stella tam iuxta horizontem，quam verticem，in eodem primj mobilis puncto cernatur，non dubium eft，eam，vel in octaua Sphæra， vel non longe infra，in orbe，cuius re〔pectu tota terra punctj vicem ge－ rat，locum obtinere． $\mathrm{Vt} \|$ igitur nobis ea ratione innote Cceret ，vtrum hæc ftella in Elementari regione，aut inter cœlestes orbes exifteret，qualem－ que ab ipfa terra haberet diftantiam，indagauimus an vllam，\＆quan－ tam，haberet paralaxin，idque hoc modo．Interuallum inter hanc \＆ Schedir Caßiopeiæ（eo quod hæc stella fere cum noua，Meridianum vnâ obtineat）obferuaui cum verticj proxima eßet， 6 tantum gradibus ab ipfo zenit remota（ideoque nullam，etiam terræ propinqua in eo loco induceret paralaxin，fed locus eius vifus \＆verus in vnum punc－ tum propter fere coincidentes a terræ centro \＆fuperficie lineas，vnitur）． Idem præftiti cum longißime a zenit remota，Horizonti proxima eßet： \＆vtrobique eandem præcife a dicta fixa inuenj distantiam nullo mi－ nuto variatam，partium videlicet $7 \& 55$ Minutorum．Idemque per alias stellas multiplicj facta obferuatione expertus fum：vnde hanc nouam stellam nullam habere afpectus diuerfitatem，etiamHorizontj vicinam， concludo．Alias enim in minima fua altitudine longius remota fuißet a prænominata

For so great is the declination of the star (as I said). As for matters concerning the position of that new star, I think I have sufficiently established the longitude and latitude with respect to the Ecliptic as well as to the Equator. But it kept this position all the time since we first saw it (repeatedly confirmed through diligent observation), and it advanced not even one minute threrafter, six months having already elapsed. Therefore, I predict that it will remain in the same place in the future and will not be moved by any other proper motion than the progression of the fixed stars common to the eighth sphere.

Concerning Its Location Relative to the Diameter of the World and Its Distance From Earth at the Center of the Universe

T is difficult, and requires painstaking ingenuity, to determine the remoteness of the stars from us on account of their incredible distance from the Earth nor can this be accomplished by any method more convenient and more certain than by means of parallaxes, if they have any. For, if any star close to the horizon is seen in a place other than where it is when approaching its highest verticality, it is necessary to locate it in some sphere relative to which the Earth has an appreciable size. But how far said globe is removed, the amount of parallax added to the semi-diameter of the Earth will show. If, however, a star is seen both near the horizon and at the vertical in the same primum mobile ${ }^{8}$ point, there is no doubt that it must maintain its place, either in the eighth sphere or not far below, in an orb with respect to which a point may be carried about the whole Earth. Therefore, in order to make it known to us whether this star was in the elementary region or among the celestial spheres, and what distance it had from the Earth, we inquired, in this fashion, whether it had a parallax and how much.

The separation between this [star] and Schedir of Cassiopeia (since this star and the new one are almost on the meridian) I observed when it was close to the vertical, only 6 degrees removed from the zenith. (Therefore, it would introduce no parallax, even close to the Earth, in that position. Rather, its position was visible and true, united in a single point because of the almost coinciding lines from the center of the Earth and from the surface.) I carried out the same thing when it was far removed from the zenith and was near the horizon. And, in each case, I found precisely the same separation from the aforementioned fixed separation, varied by not even a minute, namely, 7 parts 55 minutes. ${ }^{9}$ And I have experienced the same thing with other stars, from multiple observations whence I conclude that this new star has no difference in appearance, even near the horizon. These others, at their smallest altitude, would have been farther removed

[^3]a prænominata stella in pectore Caßiopeæ, quam in altitudine maxima. Quapropter non in Elementarj regione infra Lunam, fed longe fupra, in orbe, cuius re〔pectu terra fenfibilem non obtineat magnitudinem, collocarj hanc stellam neceßarium erit. Si enim in fuprema aëris regione infra concauam fphæræ Lunaris regionem eßet, โenlibilem induxißet in circulo altitudinis variationem, horizontj proxima, ab eo loco quem obtinebat verticj vicina. De-||fcribatur enim certioris demonstrationis caufa, circulus repræentans Meridianum, vel aliquem alium verticalem primi mobilis, in quo loca omnium stellarum confiderantur, qui fit CBDE, cuius centrum fit A: Diameter vero BE verticem, CD Horizontem defignet: fit infuper eodem centro defcriptus circulus MKL, qui terrenj orbis circumferentiam denotet. Inter hos alius fignetur circulus GHFI, qui infimum §phæræ Lunæ \& terræ proximum repræfentet ambitum, in quo stellam hanc exiftere fingamus: fitque primum in maxima fua altitudine iuxta punctum G: Manifeftum eft quod careat omni diuerfitate afpectus. Ambæ enim lineæ a centro terræ, \& oculo in eius fuperficie conftituto eductæ, in vnum eundemque primi mobilis circuli, videlicet CBDE cadent locum, in punctum videlicet B, vel prope, fistella non fit præcife in G. Hæc enim 6 gradibus a vertice remouetur, cum nobis altißima fit, qui tamen nullam fenfibilem inducunt variationem ab iplo vertice. Conftituatur vero hæc stella in eodem circulo GHFI, in minima fua altitudine, idque in puncto O , neceßarium erit eam in alio loco extremj circulj videri, fi oculus conftituatur in K fuperficie terræ, quam fi in A eiuldem centro. Ductis enim lineis a K fuperficie, \& a centro terræ A, per O locum stellæ, in extremum orbem BDEC cadet linea ab A per O in P : a K vero per idem O in Q. Eft igitur $P Q$, arcus primi mobilis, stellæ afpectus diuerfitatem oftendens. \||
Lubet itaque inuestigare quantitatem arcus PQ , vt innotefcat quantam haberet hæc stella diuerfitatem afpectus Horizonti proxima, §i in circulo IGHF proxime infra orbem Lunæ constitueretur in puncto O.||
C3r Idque vt commodius fiat, producatur linea Q OK, donec alia a centro A producta, illj perpendiculariter incidat, fitque hæc in puncto R. Cum vero angulus BKQ notus fit per obferuationem: eft enim complementum altitudinis minimæ, ipfius stellæ, videlicet, partium 62, Minut. 5, non ignorabitur ei contrapofitus R K A ipfi æqualis. Eft infuper angulus KRA ex hypothefi rectus: \& latus KA notum eft per menfuram quamcumque: eft enim femidiameter ipfius terræ: non ignorabitur AR, per 29 propofitionem Regiomontanj de triangulis planis. Si itaque ponatur femidiameter terræ K A, partium 100000 , tanquam finus totus, cum fit latus recto angulo, qui ad R, oppofitum, euadit latus AR, partium 88363. Nunc demum concipio triangulum ROA, cuius duo 4
from the star in the breast of Cassiopeia referenced above [Schedir] than at their greatest altitude. Therefore, it will be necessary to place this star not in the elemental region below the Moon but far above, in an orb relative to which the Earth does not attain an appreciable size. For if it were in the highest region of the air below the concave region of the lunar sphere, it would have exhibited a detectable variation in the altitude of its orb near the horizon compared to the place which it occupied when near the vertical.

For a more certain proof, let circle CBDE be described, with center A, representing the meridian or some other vertical [circle] of the primum mobile to which the places of all stars are referenced. Let diameter BE describe the vertical, CD the horizon. Moreover, let circle MKL be described, with the same center, which denotes the circumference of the Earth. Between these, let there be another circle, labeled GHFI, which represents the lowest sphere of the Moon and the Earth nearest to the sphere in which we imagine this star to exist.

First, let it be at its greatest altitude near the point G. It is manifest that it lacks all diversity of aspect. ${ }^{10}$ For both lines, drawn from the center of the Earth and drawn from the eye on its surface, fall into one and the same place on the primum mobile circle, that is, CBDE, at point B , or near it if the star is not precisely at G . For this is 6 degrees distant from the vertical, the highest for us, which, nevertheless, does not introduce any appreciable variation from the vertical itself. But, if this star is placed in the same circle, GHFI, at its lowest altitude, point O , it will be necessary to see it at a different place in the outer circle if the eye is placed at K on the surface of the Earth than if at A in the center of it. ${ }^{11}$ For, by drawing lines from the surface at K and from the center of the Earth, A, through O , the place of the star, the line from A through O will fall on the outer circle, BDEC at P but, from K to the same, at Q . It is therefore PQ , the arc of the primum mobile, that constitutes the diversity of the aspect of the star.

It would therefore be desirable to investigate the amount of the arc PQ, i.e., to find out how much diversity of aspect this star would have when close to the horizon were it placed in the IGHF circle just below the Moon's sphere at point O. So that this may be done more conveniently, let line QOK be extended, until another [line], drawn from the center, A, intersects it perpendicularly at point R. Let angle BKQ be known from observation; it is the complement of the altitude minimum of the star itself, namely, 62 parts 5 minutes. Not unknown, then, the equal and opposite angle RKA. In addition, angle KRA is a right angle by hypothesis [construction] and side KA is known from any sort of measuring: the semi-diameter of the Earth, or that AR is known from proposition 29 of Regiomontanus regarding plane triangles. ${ }^{12}$ Therefore, if the semi-diameter of the Earth KA, is taken to be 100,000 parts, the whole sine opposite the right angle at R , the side AR equals 88,363 parts. Now, finally, consider triangle ROA, of which two

[^4]latera RA, \& A O, nota funt. Eft enim AO distantia a centro terræ ad infimam fuperficiem orbis Lunæ, quam vnâ cum Copernico ftatuimus partium 5200000, qualium Cemidiameter terræ A K, erat 100000 (lubet enim maioribus numeris negocium hoc abfoluere, vt calculus eo fit commodior \& exactius innotefcat) cumque in dicto triangulo angulus 5 ORA ex hypothefi rectus fit, per 27 propofitionem Regiomontanj de

triangulis planis, non latebit angulus ROA. Multiplicato enim latere AR in totum finum, producuntur 8836300000 , qui numerus per latus AO diuifus, relinquit 1699 partes, finum videlicet angulj ROA, cuius arcus eft 0 partium, $58^{1 / 2}| |$ Minutorum, qui numerus anguli quæfitj C3" determinat quantitatem. Huic vero angulo ROA, æqualis eft angulus POQ: eft enim illj contrapofitus, vt patet ex elementis Geometriæ. Idcirco arcus $P Q$, qui hunc angulum metitur (nam propter immenfam diftantiam
sides, RA and AO, are known.
Since AO is the distance from the center of the Earth to the lowest surface of the Moon's sphere, which we estimated with Copernicus to be 5,200,000 parts, of which the semi-diameter of the earth AK was 100,000 then, from the hypothesis that ORA is a right angle, by proposition 27 of Regiomontanus ${ }^{13}$ on

plane triangles, angle ROA will not be unknown. Indeed, when side AR is multiplied by the whole sine to give 8836300000 , which number, divided by the side AO, gives 1699 parts, viz., the sine of the angle ROA, whose arc is 0 parts $58 \frac{1}{2}$ minutes, which provides the value of the angle sought. But to this angle ROA the angle POQ is equal since it is opposite to it as is clear from the elements of geometry. Hence, arc PQ, which defines this angle (since, because of the immense

[^5]diftantiam inter Sphæram Lunæ \& primum mobile, arcus PQ non differt fenfibiliter ab arcu circulj interuallo OP ijfdem lineis intercepto) stellæque defignat paralaxin, erit minutorum $58^{1} / 2$, quod erat quærendum. Tantam igitur habuiffet hæc stella in O polita, afpectus diuerfitatem, ab eo loco, quem prope verticem obtinebat, in eum vbi Horizontj proxima confpiciebatur. Id autem per multas \& diligentes obferuationes (vt fupra dixi) factas, exquifito \& minime fallaci instrumento, fallum inuenimus. Vnde concludo hanc nuper vifam stellam non eße in circulo IGHF, fuprema videlicet aëris regione, proxime infra Lunæ orbem, nec in aliquo loco adhuc terræ propiore. Tunc enim maiorem induxißet quantitatem arcus PQ , maiorque fieret alpectus diuerfitas: fed longe fupra 〔phæram Lunæ, in ipfo cœlo locum obtinere, idque in orbe aliquo, tanto interuallo a terra remoto, vt linea K A femidiameter terræ, non habeat reโpectu eius fenfibilem quanti5 tatem: \{ed tota terra illj collata nil præter puncti vicem habere animaduertatur, idque in octaua โphæra, vel non longe ab hac in altioribus trium fuperiorum Planetarum orbibus fierj, ab artificibus compertum C 4 r eft. Vnde hæc stella in ipfo cœlo, vel in octauo orbe cum \|reliquis fixis, vel in proxime huic fubiectis fphæris constituetur. Quod autem necin 0 orbe Saturnj, nec Iouis, Martifue, aut aliorum Planetarum exiftat, hinc patet, quod elapfo iam Гex menfium โpacio, nullo minuto ab eo loco, in quo primum eam confpeximus, motu proprio progreßa eft, quod fieri oportebat fi in aliquo Planetarum orbe eßet. Moueretur enim motu ipfius orbis peculiari, contra primi mobilis rationem, nifi in altibu porum, orbin tibus, vt fupra oftendi, remouetur. Toti enim orbes proprijs polis reuoluti, fua circumducunt fidera, vel ab illis, (vt Plinio \& quibuldam alijs placere video) circumaguntur. Nili quis receptam a Philofophis \& Mathematicis fententiam negare velit, folasque stellas immotis orbiorbium feptem errantium fiderum conftitueretur, neceßario cum ipfo orbe, cui affixa eßet, contra diurnam reuolutionem circumduceretur. Atque hic motus etiam in lentißimo Saturni orbis progreßu tanto temporis interuallo, etiam abfque omni inftrumento intuentj animaduerteretur. Quapropter hæc stella noua nec in Elementari regione infra Lunam, nec in orbibus feptem errantium fiderum, fed in octaua [phæra inter reliquas fixas locum habet, quod erat demonftrandum. Hinc fequitur illam non eße aliquam peculiarem Cometarum §peciem, nec quoduis aliud apparens igneum Metheoron. Hæc enim omnia
C4* non in ipfo cœlo generantur, fed infra \| Lunam in fuperiorj aëris regione exiftunt, vt omnes teftantur Philofophi: nifi quis cum Albategnio ftatuere velit, Cometas, non in aëre, โed in cœlo nalcj. Ille enim 〔e
distance between the sphere of the Moon and the primum mobile, the arc PQ does not differ significantly from the arc of a circle intercepted by the same lines OP) it determines the parallax of the star. It will be $58 \frac{1}{2}$ minutes, which was [the quantity] sought. This star, therefore, having been placed in O , had such a diversity of aspect that, from the place which it occupied near the vertical, it was visible to one near the horizon. But this, after many careful investigations (as I have discussed above), made with a percise and trustworthy instrument, we found to be false. I conclude that this recently seen star is neither in circle IGHF, that is, in the uppermost region of the air, immediately below the orb of the Moon, nor in any place still nearer to the Earth. For then it would have introduced a larger value to the arc PQ and the diversity of aspect would have been greater. Rather, it occupies a place far above the sphere of the Moon, in some orb in the sky itself, and so distant from the Earth that line KA, the semi-diameter of the Earth, is negligible in relation to it. But it was discovered by experts that the entire Earth combined appears as nothing but a point from the eighth sphere or, not far from it, from the higher spheres of the three higher planets. Whence this star is situated in heaven itself or in the eighth orb with with the remaining fixed [stars] or near this sphere. But the fact that it exists neither in the orb of Saturn nor of Jupiter, Mars or any of the other planets is evident from this: that, after a period of six months had already passed, it had advanced in its own motion not even a minute from the place in which we first caught sight of it, which would have happened were it in any planetary orb. For it would be moved by the motion of the specific orb itself, opposite to the direction of the primum mobile unless it resided at another of the poles of the orbs of the secundum mobile ${ }^{14}$ from which, however, it would have moved 28 parts as was shown above. For all the orbs, revolving about their own poles, circumnavigate their stars, or are circumnavigated by them (please see Pliny and some others). Unless someone wants to deny the received opinion of Philosophers and Mathematicians and to assert rather that only stars are moved by motionless spheres (which is absurd).

Therefore, were this star situated in some orb of the seven planets, it would necessarily revolve with the very orb to which it was fixed, contrary to the diurnal revolution. And, even for the very slow progression of the orb of Saturn, this movement would be noticed over such an interval of time even without any instrument for observation. For this reason, this new star has no place in the elemental region below the Moon nor in the orbs of the planets but in the eighth sphere among the rest of the fixed [stars]. Q.E.D.

From this, it follows that it is not a particular kind of comet nor does it appear to be anything like a fiery meteor since all these things do not originate in heaven itself but exist below the Moon, in the upper region of the air, as all Philosophers attest. Unless one wishes to agree, with Albategnius, that comets are born not in the air but in the sky.

[^6]Cometam fupra Lunam in fphæra Veneris obferuaße exiftimat: quod an fierj poßit, nobis nondum conftat: Sed Deo dante aliquando, finoftra ætate aliquis extiterit Cometa, eius rej certitudinem inquiremus. Hoc etfi verum eße ponamus (quod vnâ cum omnibus Philofophis vix admitto) tamen non lequitur hanc stellam Cometarum eße fpeciem: tum propter ipfam formam, quam habet cum veris stellis communem, \& ab omnium hactenus viforum Cometarum figura dißimilem: tum quod nullo motu proprio, tanto tempore, vel in latitudinem, vel in longitudinem proceßit, vt in Cometis fierj animaduerfum est. Licet enim hi aliquando in vno loco per aliquot dies quiefcere videantur: tamen non ita diu, nec ita exacte, diligenter per inftrumenta exquifita obleruatione facta, eundem feruant pofitum. Concludo igitur hanc stellam, non eße vllam Cometarum fpeciem, vel aliquod igneum metheoron, fiue infra Lunam, fiue fupra generentur: fed lucentem in ipfo firmamento eße stellam, nulla ætate a mundj exordio ante noftra tempora prius confpectam. Atque hæc de stellæ eius fitu, tum quo ad zodiacum, tum quo ad mundj diametrum, \& cœlj orbes, fufficienter dicta demonstrataque existimo: nunc ad reliqua progrediar. ||

DE EIVSDEM MAGNITVDINE, LVMINE, ET COLORE.

 AGNITUDO stellarum duobus modis ab artificibus confideratur: vno, quo ad vifibilem \& apparentem diametrum: altero, quo ad veram, quam in ipfo coelo habent quantitatem. Licet enim ftellæ nobis admodum confpiciantur exiguæ, \& non aliter quam paruæ faces in coelo lucentes appareant: tamen per ingeniofas Mathematicorum obferuationes compertum eft, eas non folum totj terreftrj globo æquales eße, fed longe illum fua magnitudine excedere: adeo vt vix aliqua tam exigua in firmamento confpiciatur ftella, quin decies octies, ad minimum, terrenam molem exuperet: vt taceam aliquas primum honorem obtinentes, centies quinquies terram magnitudine excedere. Id licet multis incredibile videatur: tamen immenfam earum a nobis distantiam confiderantj nullum mouebit dubium. Quapropter etli hæc noua stella, exigua quo ad vifum appareat: tamen reuera ingentem habet magnitudinem. Non tamen 「emper eiuldem apparuit quantitatis. Nam ab initio, menfe Nouembrj, quo primum confpici cœpit, non folum omnes ftellas fixas, Ied ip 0 es etiam Planetas, et quidem Iouem tum terræ proximum, Venerisque illuftre fidus, vifibili quantitate exfuperauit:\|poftea paulatim imminuj cœepit, adeo vt menfe Dv Decembrj,

For he thinks that he observed a comet above the Moon, in the sphere of Venus. Whether this can happen is not yet clear to us but if, God willing, a comet occurs sometime during our age, let us investigate this assertion.

Even if we suppose that this is true (which, along with all Philosophers, I scarcely admit), nevertheless, this star does not have the appearance of a comet both because of its very form which it has in common with true stars and, unlike the shape of all comets seen hitherto, because it progressed without any motion of its own, either in latitude or in longitude, as has been observed for comets. For, although these sometimes seem to stay in one place for several days, yet not so long nor so exactly do they maintain the same position when carefully observed using meticulously constructed instruments. I therefore conclude that this star is not any kind of comet or any fiery meteor, whether below or above the Moon but to be a star shining in the firmament itself, something never seen in any age since the beginning of the world until our time.

I think that I have sufficiently discussed and demonstrated those matters concerning the position of this star, both in relation to the zodiac and also in relation to the diameter of the world and the celestial spheres, so let me now proceed to the rest.

Concerning the Same with Regard to Size, Luminosity and Color

 HE size of stars is determined by experts in two ways: one, from the visible and apparent diameter, and another, from the actual value that it has in heaven itself. For although the stars as visible to us are very small, and appear no different from little torches shining in the sky, nevertheless, by ingenious observations of Mathematicians, it has been discovered that they were not only equal in size to the whole globe of the Earth but far exceeded it, so much so that scarcely any star that is visible in the firmament is so small that it would not exceed the mass of the Earth by at least a hundred and five times. This may seem incredible to many yet, considering their immense distance from us, there is no doubt.Therefore, although this new star may appear small to the eye, it is really of great size. However, it did not always appear of the same size. For, from the beginning, in the month of November when I first saw it, its visibility exceeded not only all of the fixed stars but also the planets themselves, even Jupiter, then the neighbor of the Earth, and Venus, a brilliant star. Afterwards, it began to decrease little by little, so much so that by the month

Decembrj, Ioui fere æquaretur: in Ianuario, illo paulo minor, et fixis primj honoris maior, quibus in Februario et Martio æqualis apparuit, confpiceretur. Demum etiam plus imminuta eft, adeo vt hoc tempore in initio nimirum Maij, stellas fecundi honoris non excedat. Quemadfic etiam quo ad veram, variatam eße confentaneum ef Abinitio aur號 tem quando longe excedebat stellas primæ magnitudinis, incredibilj quantitate totam Terræ molem fuperabat. Nam fi stellæ fixæ primæ magnitudinis, Terram (iuxta Mathematicos) centies quinquies exupe0 rant, \& hæc noua tantundem a Terra, quantum illæ (vt fupra demonftrauimus) remouetur, maioremque longe obtinuit vifibilem diametrum, neceßario etiam longe plus centenis vicibus molem, quam Terra \& Maria efficiunt, ab initio exceßit. Sed progreßu temporis imminuta, iam non maior eße poterit ip โa Terra, quam funt stellæ fecundi quis fixis (prout fupra quoque aßeruimus) collocarj. Planetæ enim
D2r non fcintillant, fed $\mathrm{Co}-\| \mathrm{lum}$ stellæ fixæ, \& inter eas aliquæ magis, aliquæ vero minus: fiue quod earum maxima a nobis remotio hoc efficiat per aërem intermedium, vt quidam opinantur, quod tamen non credo: alias enim Saturnus Apogeus, cum proximus eft stellis fixis, etiam fcintillaret: fiue quod fixa fidera fuper propria centra perpetuo circumgirantur, \& inde pro aëris qualitate fcintillationem afpectuj immittant, vt potius cum Platonicis statuo.

Quantum vero ad colorem huius stellæ attinet, non femper eundem
30 retinuit, fed ab initio albicans videbatur, \& propius Iouiali fplendori acceßit: progreßu autem temporis, lumine coarctato \& infpißato, in rutilantem \& Martium fulgorem degenerauit: qualis eft Aldeboræ, aut illius, quæ in dextro humero Orionis rubefcit. Non tamen vfque adeo rutilans fuit, quemadmodum hæc in humero, fed propius ad co-
35 lorem Aldeboræ acceßit. Nunc autem relicto ifto Martio rubore, in liuidam tranfiit albedinem, ita vt hoc menfe Maio, quiddam Saturnium \& Veneri fimile præ fe ferat.

Quod autem hæc stella tam magnitudinem quam colorem, vt diximus, fenfibiliter mutauerit, id non fufficienter probat, eam in Elemen40 tari regione, infra orbem Lunæ collocarj, \& peculiarem eße quandam Cometarum fpeciem, vel aliam quamuis igneam exhalationem. Si enim poßibile fuit, nouum aliquod corpus, in ipfo æthere generari, quod
of December, Jupiter was almost its equal. In January, it was seen to be a little smaller than that and greater than the fixed stars of the first rank with which it appeared equal in February and March. Finally, it was even more diminished so that, at the current time, the beginning of May, it does not exceed stars of second rank. But, just as the visible diameter was reduced in this manner, so also its true [diameter] varied consistently with this. But, at the beginning, when it far exceeded stars of the first magnitude, it exceeded the whole mass of the Earth by an incredible amount. For, if the fixed stars of the first magnitude had exceeded the Earth a hundred and five times (according to Mathematicians), and this new one was as distant from Earth as the former (as we have shown above) and manifested a far greater visible diameter, it necessarily also exceeded the mass of the land and seas far more hundreds of times initially. But, diminished by the progress of time, the Earth itself could be no greater than stars of the second rank.

Indeed, the light of [this] star is seen to be brighter and more radiant than other [stars], so much so that it might be distinguished from those others, sometimes being perceived at the beginning of the day or even near noon when the sky was not obscured by any density of air. It also sparkles, like the rest of the fixed stars, and very much. Accordingly, it is also evident that it is not among the orbs of the planets but is located in the eighth sphere with the rest of the fixed [stars] (just as we claimed above). For the planets do not sparkle, only the fixed stars, and among them some more, some less or that those of greatest distance from us are affected by the intervening air, as some think, which, however, I do not believe. Otherwise, Saturn at apogee, when it is nearest to the fixed stars, would also sparkle. Or, that the fixed stars are perpetually revolved around their own centers, and thence send out a scintillation in appearance due to the quality of the air. Rather, I concur with the Platonists.

As regards the color of this star, it did not always stay the same but, at the beginning, it was seen to be white and came close to the brightness of Jupiter but, over time, the light became constrained and dull and degenerated into a reddish, Martian brightness such as Aldebaran, or that which blushes on the right shoulder of Orion [Betelgeuse]. It was not, however, as glowing as this one on the shoulder but came close to the color of Aldebaran. But now, having left that red of March, it changed to a livid white so that, in this month of May, it looks similar to Saturn and Venus.

But, as we have said, the fact that this star has appreciably changed both its size and its color does not sufficiently prove that it is placed in the elemental region, below the orb of the Moon, and that it is a peculiar kind of comet or some other fiery exhalation. For, were it possible for some new body to be generated in the ether itself,
quod de hac stella fupra infallibilibus demonftrationibus, contra omnium Philofophorum || fententias \& decreta, probauimus: longe minus D2v impoffibile \& abfurdum cenfebitur, hanc ipfam nouam stellam, aliquam alterationem magnitudinis \& coloris admittere. Imo vero, quemadmodum illa aliquando in colo, præter communes Naturæ Leges extitit, ita etiam fi in eodem aliquando, contra ealdem Naturæ Leges confpicj (vt credibile eft) definat, non video, quid priori, hinc magis abfurdum confequatur.

ASTROLOGICUM IUDICIUM DE EFFECTIBUS HUIUS NUPER NATÆ STELLÆ

TSI de effectibus huius stellæ aliquid certj conftituere longe fuperet Aftrologiæ metas, \& verifimile fit, Deum, maius quippiam per hanc, mundo ostendere, quam beneficio vllius fcientiæ Phyficæ a quouis mortalium præfciri poßit: tamen breues coniecturas ab Aftrologiæ fontibus petitas fubiungam, quatenus nonnulla huius artis beneficio præfciri poßibile eft, \& mihi cognita pro temporis breui occafione in mentem veniunt: nihil hac in parte derogantes Theologorum, vel aliorum quorumuis fententiæ, nec noftras coniecturas pro Edictis prætoriis aut oraculis vendentes. Verifimile eft autem, quem- 20 admodum \| huius stellæ miraculum, præ omnibus, quæ a mundj ex- D3r ordio facta funt, eft rarißimum \& maximum: fic etiam rarißimos \& maximos habituram hanc stellam effectus. Quapropter illam plus ostenti habere iudico, quam vlli fuperiorum Planetarum congreßus, etiam illj, quos vocant maximos: aut vllæ luminarium quantæcumque eclipfes: vel vllæ aliæ, quouis modo stellarum in cœlo congreffus aut configurationes. Hæc enim omnia, etfi magnas in hunc inferiorem mundum habeant potestates, vt indies veri experiuntur Artifices: tamen, quia crebrius fiunt, \& naturali ordine, non tantas habere poßibile eft fignificationes, quantas hæc recens nata stella, quæ præter omnem Naturæ ordinem, nunc primum in cœelo extitit, omnefque reliquas fixas, fua magnitudine \& luminis fulgore plurimum exuperat. Qui vero \& quales futuri fint huius stellæ 'effectus, admodum difficile eft ex Aftrologiæ fundamentis indagare. Hæc enim Ars, ex multiplici, \& raro fallenti experientia, fuas constituit Conclufiones, nec nifi femel, tempore Hipparchi factum eße legimus, quod noua in colo prodierit stella. Vnde ab experientia, iudicium hac in re petere, ambiguum peneque impoßibile eft. Verifimile tamen eße iudico, quod veluti circa Hipparchi tempora, qui floruit iuxta annum mundj 3840, ante Christum annis
which, regarding this star, we have proved above by infallible demonstrations, contrary to the opinions and decrees of all the Philosophers. One would have thought it far less impossible and absurd to grant this novel star some alteration of size and color. Indeed, if it somehow or other existed in heaven, in spite of the common laws of nature, so what if it likewise exhibited appearances contrary to those same laws of nature (i.e., it is credible). I do not consider that more absurd than the former.

A Constellation Cassiopeia

Cassiopeia is wholly circumpolar above latitude 44 North so it goes from right-side-up to upside-down and back over the course of a day. In the figure below, the image is rotated compared to the plot shown on page 14.

Figure 1: Cassiopeia [4, pg. 319]
Some data for stars referenced later are given in Table 1. Those in the figure on page 14 are shown with a second label in parentheses (legends not completely consistent).

Table 1: Principal Stars in Cassiopeia

| Tycho
 Label | | Cocation | | |
| :---: | :---: | :---: | :---: | :---: | Symbol | RA (HH.MMSS) |
| ---: | :--- | Dec (DD.MMSS)

The position data above are not what Tycho would have observed (due to precession). However, he was measuring only angular separations of the nova from the "fixed" stars of Cassiopeia. Such separations are unaffected by precession. ${ }^{15}$

Tycho's measurements regarding this nova, visible for about a year, were carried out with a hastily constructed half-sextant ${ }^{16}$ which was not as accurate as the instruments that he had available in later years. However, utilizing the latter, he was able, eventually, to publish better data.

[^7]
B Tycho's Half-sextant

ALIVD INSTRVMENTVM SIMILE PRIORI, PRO DISTANTIIS.

Figure 2: "Another Instrument Like the Previous, for Separations"

EXPLICATIO FABRICÆ ET
 VSVS.

ARARAM vero jam antea, cum in adolefcentia Auguftæ Vindelicorum in fuperiore Germaniâ aliquandiu morarer, fimile quoddam Inftrumentum ex ligneâ tamen materiâ folummodo conftans, \& fulcro deftitutum, cum levitate fuâ alias utcunque tractabile eßet. Id vero inde difcedens, amplißimæ ejus Reip. Confuli Paulo Hainzelio optimæ memoriæ horum ftudiorum amantißimo \& mihi familiarißimo dono reliqui. Cumque reverfo mihi in Patriam BAC contrahitur \& relaxatur, prout exigit intercapedo dimetienda. Et licet hæc cochlea in directum eat, poteft nihilominus circulari ductui, qui fit circa DE fupra centrum A fufficere: cum ab alterâ parte, ubi matrices habet, in claviculis rotundis convolubiles exhibeat; prout in antecedenti etiam infinua35 vimus. Quin \& intra hanc cochleam verfus Centrum oculo adhuc propior eft

B. 1 Explanation of Construction and Use

NCE before, in adolescence, while I was staying in Augsburg in upper Germany, I had fashioned a similar instrument constructed solely of wood and which, being very light and lacking a support, could be moved around to any orientation. Indeed, upon departing and with the fondest memories of these studies, I left it as a most loving and, to me, a most appropriate gift to Consul Paul Hainzel. And when, on returning to my country, with that new and exceedingly wonderful star of the heavens appearing just afterwards, I carefully devised something of the same kind to mearure its distance from the neighboring stars of Cassiopeia.

This is the idea. Its arc, in which there are divisions, is given by BC. And here it spans the twelfth part of one circle, or 30 degrees, sufficient to accommodate smaller separations such as those of which we have spoken without being heavy or unwieldy due to its length. If desired, other arcs, whether larger or shorter, may be substituted. Bars AB and AC , joined near the center, A , and there collapsing to each other, and subtending the circumference near B and C, have a length of 4 cubits. ${ }^{17}$ These are four-sided with a width of three fingers and a thickness of two. They are formed from especially dry wood of a walnut tree no more subject to change from the quality of the air than is the rest [of the instrument]. The bars are joined at the center, A, with a metallic nail, with the hole and the entire assembly reinforced with brass plates.

The arc itself is solidly metallic but not too thick or too wide lest it be impaired by weight; moreover, so that this alteration, as it affects the wooden material underneath, is not an obstacle. The pinnacidia at B and C are also brass and so adapted that their inner sides correspond exactly to the inner surface of the bars. Underneath, there is a screw by which the movable pinnacidium is secured once the observation has been completed and until the numbering has been done on the scale.

In addition, there is another oblong screw, DE, with the help of which the angle of the instrument, BAC, is contracted and relaxed as the interval demands. Although this screw goes in a straight line, it may nevertheless accommodate a curve which is around DE above the center, A, while on the other side, where there are lists, it exhibits enclosing round pegs just as we have insinuated. Furthermore, inside this screw, towards the center of the eye,

[^8]circumferentia quædam GLH, priori Regulæ juxta G affixa, \& altera apud L tranfiens, cujus officium eft, ambas Regulas in fuo plano cohibere, ne ob longitudinem nonnihil diftrahantur. Poteft etiam in eodem Arcu a pofteriore parte firmari Angulus Inftrumenti. Diftat vero is a centro quafi pro tertiá parte longitudinis Regularum, ut commode ifthuc applicatâ alterâ manu regi queat in eo motus Regularum atque ftabiliri. Habet infuper duo manubria ab alterâ parte, quæ hic repræfentari non poterant. Pedeftale illi nullum jam tum conftruxeram; fed cum non nimis grave eßet Inftrumentum, fupra fulcrum aliquod transverfum firmiter infra pofitum, poterat in quævis ftellarum plana haud admodum difficulter verti $\&$ contineri; donec obfervatio peracta foret.

USUS ejus eft quemadmodum in priori, applicato oculo ad I \& circumacto manubrio F, unaque circumductâ cochleâ DE contrahatur vel dilatetur Angulus Inftrumenti $B A C$, donec ambo fidera, quorum remotiones quærimus intra pinnacidia B \& C ad amußim \& centraliter cernantur. Tunc enim Arcus pinnacidijs \& Regulis ibidem interceptus, obfervatorem voti compotem reddit. At quoniam centrum vifus centro Inftrumenti refpectu cujus Divifiones procedunt, applicari non poteft, prohibente folidâ parte, quæ eft ab A in I; idcirco neceßarium eft, Diftantias, oculo Excentrice conftituto demenfas \& in Arcu numeratas jufto majores eße ijs quæ ipfi Cœlo competunt.

Quare ut huic incommoditati fubveniretur, Tabellam quandam conftruxeram, eandemque $a b$ alterá Inftrumenti parte denotaram, ut femper in promptu eßet, quæ Parallaxes Inftrumenti fuppeditavit, quantum nimirum juxta fingulos obfervationis factæ Gradus fubtrahendum eßet, ut vera \& ipfi Cœlo confona proveniret intercapedo, atque prorfus eadem, quæ ex Centro Infrumenti prodiret fi centrum vifus eidem uniretur. Quâ vero ratione hæc Tabula juxta Triangulorum planorum inductiones concinnata fit, demonftratur a nobis in Progymnafmatis Inftaurationis Aftronomicæ volumine noftro primo pag. 342 in capite eiufdem quarto; quod alias a pag. 335. ufque in 343. luculentam hujus Inftrumenti defcriptionem exhibet. Ad quod lectorem de hoc plura cognofcendi cupidum remitto. Inveniet etiam ibidem paulo poft Diftantias Novæ ftellæ a vicinioribus Caßiopeæ ac quibuldam alijs, tum quoque fixarum inter fe exactißime eodem Inftrumento menfuratas, atque in ufum deductas. Nullum enim aliud huic officio accommodum tunc ad manus habebam: utpote nuper e peregrinatione Germanica domum reverfus, \& 35 Pyronomicis potius exercitijs quam Aftronomicis tunc occupatus.

Licet
there is another circumference, GLH, one end attached to the first bar near G and the other passing through L , the purpose of which is to restrict both bars to a plane lest they should be somewhat distorted due to their length. The back of same arc can also serve to strengthen the angle of the instrument. Actually, it is separated from the center by a third of the length of the rulers so that the motion of the rulers, as necessary, may be controlled and stabilized using the other hand. It also has two handles on the opposite side which could not be shown here. I had not at that time constructed any pedestal for it but, since the instrument was not too heavy, whenever it was firmly placed on top of some transverse support, it could be turned and held with little difficulty in any of the planes of the stars until the observation was completed.

Its use is the same as with the previous one. With the eye applied at I , the handle F is rotated and the circumscribing screw, DE , contracted or dilated until both of the stars whose separation we seek are aligned at the front and centrally to pinnacidia B and C. At that point, the arc, delimited by the pinnacidia and the rulers, provides the observer with his determination. But, since the center of the view is the center of the instrument as well as the sequence of the divisions, it is not appropriate because of the the solid portion which is from A to I. Consequently, it follows that these separations, as measured by an eccentrically situated eye and so quantified in the arc, should really be greater than those proper to the heavens themselves.

Wherefore, in order to remedy this inconvenience, I had constructed a certain table and recorded the same on the other side of the instrument, so that it might always be at hand, which furnished the parallax of the instrument: how much, certainly, should be subtracted from each degree of observation made so that the truth and harmony with Heaven itself would come from the interval, in other words, exactly as it would appear from the center of the instrument if the center of sight were joined to it. That this table is computed in accordance with relations of planar triangles is demonstrated by us in our Progymnasmata Instaurationis Astronomicae (vol. I, ch. 4, pg. 342). ${ }^{18}$ Elsewhere, pp. 335-343, there is a clear description of this instrument. I leave this to the interested reader. He will also find there, a little later, the separations of the new star from neighboring Cassiopeia and some others and, also, of those fixed stars to each other, measured very exactly by the same instrument and later utilized. For I had, at that time, nothing else available for this task as I had lately returned home from a German pilgrimage and was then more occupied with alchemical endeavors than with astronomical ones.

[^9]Licet vero hoc Inftrumentum non adeo Excellens fit, atque ea, quæ poftmodum fucceßivis aliquot annis excogitavi, \& magno labore atque fumptu confieri feci, ideoque poftea a me antiquatum: tamen illud qualecunque fit, cum \& ufui non incommodum exiftat, hîc una cum cæteris delineandum exponendumque duxi, quo $\&$ eorum rationem haberem, quibus operofa illa \& fumptuofa adeo Inftrumenta, conftruendi non fuppetit facultas. Illi itaque hoc contenti rectius \& præcifius, quam ante hac per Radium Aftronomicum factum eft, Itellarum fcrutabuntur intercapedines: modo Parallaxin de quâ dixi, rite $\&$ expedite
præcaveant.

It is true that this instrument is not so excellent and, given those that I subsequently devised over several successive years and to which I devoted a great deal of labor and expense, it was eventually rendered obsolete by me. Nevertheless, for what it's worth and since there is no disadvantage to its use, I have here drawn up and explained it, along with the rest, since it may be of advantage to those for whom it is not possible to construct laborious and costly instruments. Having therefore satisfied themselves with this, intervals between the stars will be investigated more directly and more precisely than was done before by means of the astronomical cross-staff. But let them quickly and properly correct for the parallax which I have discussed.

B. 2 Excerpts From the Progymnasmata

But because the pupil of the eye could not engage the center of the instrument, along with the arc and, indeed, its sequence of divisions, being hindered by that solid part which is from A to I, it meant that the distances of the eccentric eye were placed beyond the arc's central location and the intervals observed actually inflated and altogether inconsistent with Heaven itself. I had a table annotated on the back of the instrument which, giving the parallax of the instrument, showed how much the observed degrees of the stars' angular separation should be subtracted, as if it were viewed from the center of the instrument, so as to be true and consistent with Heaven itself. Thus, I was alleviating this effort with a small savings. Now, the computation of these parallaxes and their table were as follows.

In the adjacent figure, let A denote the center of the instrument. Let AB and AC be its two rules but let the eye of the collimator be next to I, the latter being always in a straight line along the inner surface of rule BA. Thus, it produces no parallax on that side; the rule BA remains at rest while the other, AC , is approaching and receding from it. In this way, BA is extended to 1 and from I the eye to C. Straight line, IC, is drawn to the other pinnacidium near the norm of which the view is transferred to pinnacidium C. I say that the parallax of the instrument is given by the angle ACI. Assuming that angle BAC is known from observation, external angle CAI is obtained from arc BC as the complement of two straight lines when two sides of triangle ACI are given that subtend a known angle. CA is the length of the rule from the center to the pinnacidium
 which can be subdivided into several parts, in this case a thousand, and it will soon be seen how many of these parts AI takes up for the sides of AI will be given in the same parts. Consequently, from the laws of plane triangles, it is clear that angle ACI, representing the desired parallax in the separation of the observed stars, must always be subtracted from the apparent separation since the eye, being positioned at I, will, upon seeing both stars, enlarge the arc BC compared to its being at A in the middle of the arc.

Accordingly, for each degree of the whole sextant, a table is generated providing a diversity of perspective to the instrument although from one degree to another there is no great difference in parallax. And, if one wishes to execute the matter very precisely, this difference can be interpolated.

In this fashion, we have corrected that discrepancy by which the eye was not set up at the center of the instrument so that you may be satisfied and so that this instrument be more exact in determining separations than an astronomical cross-staff.

Separations of Principal Stars of Cassiopeia from Each Other

Separation		Location	Degrees	Minutes
Of	From			
12	1	head	6	$33 \frac{1}{2}$
	2	Schedir	4	59
	3	belt	5	19
	4	flexure	6	$12 \frac{1}{2}$
	5	calf	9	42
	6	leg	13	$17 \frac{1}{2}$
	7	end foot	17	26
	11	upturn of the seat	4	44
2	1	head	2	41
	3	belt	1	42
	4	flexure	4	40
	5	calf	6	56
	6	leg	11	33
	7	end foot	16	28
	11	upturn of the seat	6	27
4	1	head	7	20
	3	belt	3	3
	5	calf	3	35
	6	leg	7	19
	7	end foot	11	$56 \frac{1}{2}$
	11	upturn of the seat	3	35
11	1	head	9	3
	3	belt	5	23
	5	calf	6	$48 \frac{1}{2}$
	6	leg	9	$9 \frac{1}{2}$
	7	end foot	12	49
1	3	belt	4	17
	5	calf	9	6
	6	leg	13	53
	7	end foot	18	54
3	5	calf	5	$19 \frac{1}{2}$
	6	leg	9	53
	7	end foot	14	45
5	6	leg	4	50
	7	end foot	9	56
6	7	end foot	5	9

Separations of the New Star
from Certain Fixed Stars in the Constellation Cassiopeia
Carefully Checked and Verified

Separation				
From	To	Location	Degrees	Minutes
	1	head	10	22
	2	Schedir	7	$50 \frac{1}{2}$
	3	belt	6	53
	4	flexure	5	2
Nova	5	calf	8	$3 \frac{1}{2}$
	6	leg	9	48
	7	end foot	12	$58 \frac{1}{2}$
	11	upturn of the seat	1	31
	12	middle of chair	5	19

References

[1] A. M. Duncan (translator). On the Revolutions of the Heavenly Spheres. Barnes and Noble, 1976.
[2] Barnabas Hughes, O.F.M. (Translator). Regiomontanus on Triangles. Univ. of Wisconsin Press, 1967.
[3] Dreyer, I., Ed. Tychonis Brahe Dani Opera Omnia, vol. I. Hauniae In Libraria Gyldendaliana, 1913.
[4] Dreyer, I., Ed. Tychonis Brahe Dani Opera Omnia, vol. II. Hauniae In Libraria Gyldendaliana, 1915.
[5] Dreyer, I., Ed. Tychonis Brahe Dani Opera Omnia, vol. V. Hauniae In Libraria Gyldendaliana, 1923.

[^0]: ${ }^{1}$ c.f., Table 1

[^1]: ${ }^{2}$ When the two sides enclosing a given angle of a nonright [spherical] triangle are known, the remaining side and the other angles may be found. [2]
 ${ }^{3}$ In any [spherical] triangle that has three known sides, the three angles may be found.
 ${ }^{4}$ When three given sides of a spherical triangle are constructed from the arcs of great circles, all the angles of this triangle may be determined.
 ${ }^{5}$ If all the sides of a [spherical] triangle are given, the angles may be found. [1]

[^2]: ${ }^{6}$ see Uraniborg Math Handbook
 ${ }^{7}$ in the Spring, when Libra is visible at night

[^3]: ${ }^{8}$ the "sphere" supposedly responsible for diurnal rotation
 ${ }^{9}$ This is his 1573 measurement. See page 48 for his later, improved measurement. (The correct value, to the nearest minute, is $7^{\circ} 50^{\prime}$)

[^4]: ${ }^{10}$ That is, it is on a line extending to to the center of the Earth.
 ${ }^{11}$ In other words, there will be noticeable parallax.
 ${ }^{12}$ When one of the two acute angles and one side of a right triangle are known, all the angles and sides may be found.

[^5]: ${ }^{13}$ When two sides of a right triangle are known, all the angles can be found.

[^6]: ${ }^{14}$ the "sphere" supposedly responsible for periodic retrogressions

[^7]: ${ }^{15}$ but are affected very slightly by proper motion
 ${ }^{16}$ For Tycho's description in his Astronomiae Instauratae Mechanica (1598), see Appendix B [5, pg. 80].

[^8]: ${ }^{17} 1$ cubit $=40 \mathrm{~cm}$ [5, pg. 319]

[^9]: ${ }^{18}$ Preliminary Exercises for the Restoration of Astronomy [4] (see Section B.2)

