
MacMCMC (v1.6)
User Guide

Michael P. McLaughlin

November, 2022

MacMCMC (v1.6) User Guide
Copyright © 2022 by Michael P. McLaughlin. All rights reserved.

DISCLAIMER:
MacMCMC is intended solely as a tool for the convenience of users. It makes no guarantee or warranty of
any kind that its use and/or its output are appropriate for any purpose. All such decisions are at the discretion
of the user.

Any brand names and product names included in this work are trademarks, registered trademarks, or trade
names of their respective holders.

This document created using LATEX and TeXShop.
Figures created using MacMCMC or Mathematica™ (with SetAxes)

https://www.wolfram.com/mathematica/
https://www.causascientia.org/math_stat/SetAxes.html

Contents

A Word to the Wise (and others) v

1 Quickstart 1
1.1 Things To Try . 1
1.2 System Note . 2

2 Basic Procedure 3
2.1 Installation . 3
2.2 Menus . 3
2.3 Input . 5
2.4 Setup Options . 7
2.5 Run Status . 9
2.6 Output . 10

3 Modeling Language 13
3.1 Models . 13
3.2 Mixtures . 18
3.3 What Might Go Wrong? . 21

4 Goodness-of-fit 23
4.1 General Procedure . 23
4.2 Credible Interval . 24
4.3 Goodness-of-fit Examples . 24

A Distributions 34
A.1 Continuous . 34
A.2 Discrete . 37
A.3 Mixtures . 38
A.4 Generic . 39

B Functions 40
B.1 Operators . 40
B.2 Functions . 41

i

B.3 Reserved Constants . 42

C Technical Details 43
C.1 Software . 43
C.2 MCMC . 43
C.3 Marginal Likelihood . 45
C.4 Mixture Relabeling . 45
C.5 Marginal-plot Smoothing . 46
C.6 Goodness-of-fit Credible Intervals . 46

D Examples 47

List of Figures

1.1 Plot Showing Goodness-of-fit (mean estimates) 2

2.1 Initial Menus . 4
2.2 Analyze Menu . 5
2.3 Enzyme Model . 6
2.4 Data Window . 7
2.5 Setup Dialog . 8
2.6 Status Window (Sampling phase) . 9
2.7 Status Window (Done) . 10
2.8 Report Window . 11
2.9 Marginal for Parameter A . 12

3.1 Enzyme Model2 . 14
3.2 Marginal for Parameter sig . 17
3.3 Model vs. Data: With and Without Model Error 18
3.4 Salaries: Mixture Model . 19
3.5 Salaries: Data and Model (mean estimates) 21

4.1 Daytime Model . 25
4.2 Goodness Dialog for Daytime Example 26
4.3 Goodness-of-fit for Daytime Example 26
4.4 Hale-Bopp Model . 27
4.5 Goodness-of-fit for Hale-Bopp Example 28
4.6 Body-temperature Model . 29
4.7 Goodness Dialog for Body-temperature Example 29
4.8 Goodness-of-fit for Body-temperature Example 30
4.9 Hyphens Model . 31
4.10 Goodness-of-fit for Hyphens Example 32
4.11 Marginals for Zero-count and Two-count 33

iii

List of Tables

3.1 Results for model1 . 17
3.2 Results for model2 . 17
3.3 Results for Salaries . 20

D.1 Examples . 48
D.2 Functionality vs. Examples . 48

iv

A Word to the Wise (and others)

The DISCLAIMER on the copyright page says it all but perhaps you missed it so here it
is again with further elaboration.

First, MacMCMC is a (MacOS-only) application for performing Bayesian inference
by carrying out MCMC analyses as described in detail in Data, Analysis and Inference, a
free ebook which constitutes the second half of this published offering. Users not already
very familiar with this approach to data analysis are strongly urged to read this book. This
User Guide is only software documentation; it says almost nothing about how to carry out
Bayesian inference. The cited ebook does, with many examples, including most of the
examples in this Guide. [6]

Second, MacMCMC takes user-defined models as input and the opportunities to make
a mistake in creating such input can often prove embarrassing. It is even possible to
construct a model that will cause MacMCMC to crash! The usual reason is that array
indices, or their priors, are defined in such a way as to overrun the actual array bounds (see
pg. 21). An MCMC model is like a little computer program in many respects. Be warned!

MacMCMC will probably catch most syntactic errors (typos, misspellings, mismatched
parentheses, etc.) but it will not catch semantic errors. These arise because the model does
not, in fact, describe what the user thinks it does. Bayesian inference is extremely powerful
when done correctly but it requires careful thought and a fair amount of effort.

If you are looking for software to provide quick-and-dirty answers, look elsewhere.

MICHAEL P. MCLAUGHLIN

MCLEAN, VA
NOVEMBER, 2022

MPMCL ‘AT’ CAUSASCIENTIA.ORG

v

https://causascientia.org/math_stat/DataUnkInf.html
mailto:mpmcl@causascientia.org

Chapter 1

Quickstart

THIS chapter is for those who cannot wait to see the program working. Assuming
that MacMCMC is installed in (copied to) the Applications folder, follow the six
steps below to run the enzyme example. This is a weighted, nonlinear regression

analogous to traditional least-squares. The input (enzyme.mcmc, enzyme.dat) and non-
optional output (report.txt, trace.txt) will be described in detail in the following chapters.

It is assumed, here and elsewhere, that you are familiar with the MacOS user interface
and standard Finder operations. To see MacMCMC in action, do the following:

1. Go to the Quickstart folder.

2. Double-click enzyme.mcmc (or Open this model from the application).

3. Input the data (File/Data. . . or Shift-Command-D) and select enzyme.dat.

4. Compile the model (Analyze/Compile or Command-K).

5. Do Setup (Analyze/Setup. . . or Command-M).

6. Click the Run button (in Setup dialog).

The program will execute in about ten seconds1 producing two output files in the local
(data-file) folder. The screen will contain two new windows: one for the (saved) Report
and one (unsaved) for the first of three marginal plots corresponding to the three Monitored
unknowns in the model (two parameters plus one “Extra”).

1.1 Things To Try
If you Restart (File/Restart or Command-R), the model must be recompiled. In that case,
report.txt and trace.txt (saved automatically) will be overwritten. Restart and increase
Setup option # Samples per walker to get smoother marginals (and a longer trace).

1on a standard 2017 iMac

1

https://en.wikipedia.org/wiki/Least_squares

CHAPTER 1. QUICKSTART 2

Try the Smoothing tool in the marginal window for parameter A and note that the axis
labels may be edited (but not the tick marks). All plots may be saved as PDF or PNG.

Select parameter B (or RSq) from the drop-down menu in the Status window then click
Reset to get the corresponding marginal plot.

MacMCMC can usually make its own goodness-of-fit plots if the model so specifies
(see Chapter 4) but you can also make them from the posterior output in the trace utilizing
your favorite graphing software. An example is shown in Figure 1.1.2

� �� ��� ��� ���
�

��

��

��

��

����

��
��

Figure 1.1: Plot Showing Goodness-of-fit (mean estimates)

If you understand how MCMC works, then you know that you can use the trace to
answer any question about the analysis provided that the model is valid and the MCMC
run successful.

1.2 System Note
This was a very short MCMC run. In some cases, with a very large amount of data and a
large model, runs may take a long time to execute. The system Energy Saver preferences
should be set to “sleep Never” or equivalent; otherwise, a really long run might be halted
before it is finished.

2created in Mathematica (with SetAxes)

Chapter 2

Basic Procedure

IN this Guide, all of the operational features of MacMCMC are described in roughly
the order in which they are encountered when running the program. This includes
installation, menus, dialogs and input/output. Details on the requirements and structure

of model pseudocode are described in the following chapter.

2.1 Installation
There are no special requirements regarding the installation of MacMCMC. Just follow the
instructions in the file INSTALLATION.rtf.1 Place MacMCMC in the Applications folder
and other files in this package wherever it is convenient. Adding MacMCMC to the Dock
is optional.

Note: While MacMCMC is running, there will always be one or more hidden sub-
processes running as well. They will all be named MacMCMC M2C2. These processes
are “headless” and cannot be seen except in the Activity Monitor. These sub-processes of
MacMCMC will be terminated whenever the main application Quits in the normal fashion.

If you have not already done so, this would be a good time to carry out the steps listed
in the Quickstart chapter so that the material in the following Sections will be familiar.

2.2 Menus
Here, we discuss only those menu items specifically relevant to MacMCMC. The rest are
common to all MacOS applications.

All menu screenshots depict the appearance of menus for the usual startup with many
items disabled (dimmed) when not appropriate.2

1updated for MacOS Catalina and later
2Theses screenshots were taken with MacOS Ventura.™

3

CHAPTER 2. BASIC PROCEDURE 4

2.2.1 MacMCMC and File Menus
These two menus are typical of almost any application.

(a) MacMCMC Menu (b) File Menu

Figure 2.1: Initial Menus

The primary point of interest in the MacMCMC menu is the Check for Update. . . item.
This will not update MacMCMC in place; it merely points the user to the website when
there is a later version since other package elements might also be new.

The File menu as shown above is waiting for a model (.mcmc) file. If MacMCMC is
opened by double-clicking or drag-and-dropping a model file, the File menu will appear
with the Open items dimmed and the Data item enabled, waiting for a data file. The next
step, compilation, cannot take place without both a model and some data. The model must
be input first.

Only one analysis can be done at a time.

CHAPTER 2. BASIC PROCEDURE 5

2.2.2 Analyze Menu
Analysis consists in applying a model to the observed data. This model is a user input and
there is, of course, no guarantee whatever that it is correct (or even sensible).3 Before the
model can be applied, it must first be compiled then Setup options chosen. These actions
are accomplished through the Analyze menu.

Given a model and data, this Analyze menu will appear as follows:

Figure 2.2: Analyze Menu

Successful compilation will enable the Setup. . . menu. Editing the model, which can
be done in place, will require recompilation. The goodness-of-fit procedure, if any, cannot
be selected until everything else has finished (see chap. 4).

2.3 Input
Model and data files must be plain ASCII (UTF-8) textfiles with no styling, accents, etc.

2.3.1 Model
All model files must have extension mcmc. Models are editable. Blank lines are ignored.
C++ and C comments are permissible. Figure 2.3 displays the model window (vertically
extended to show everything) for the Quickstart example.

The seven sections, {Constants: . . . Monitored:} are mandatory. Extras, however, are
optional so this section may be empty. There must be at least one uncertain parameter
(from Bayes’ Rule). At least one uncertain quantity must be Monitored.

Choosing New from the File menu creates an empty (unsaved) model.

2.3.2 Data
All data files must have extension dat. Data files are not editable. Figure 2.4 shows a
screenshot of the Data window for the Quickstart example.

MacMCMC does not support creating data files; these must be created and saved as
tab-delimited text from some other application, e.g., a spreadsheet. Requirements and
options include the following:

3See pg. v.

CHAPTER 2. BASIC PROCEDURE 6

Figure 2.3: Enzyme Model

• The tab-delimited data array must be rectangular with one variable per column, as in
the example, and no blank lines or entries. For multi-dimensional data, see below.

• A semicolon in the leftmost position indicates a full-line comment.

• A comment, beginning with a semicolon, may be appended to a data record.

• The first non-comment record must contain the data variable names. There may be
no comment on this line.

• Data columns of unequal length must be filled (only at the bottom!) with asterisks
to complete the rectangular array. See Example SAT.

• The data file must be completely consistent with the model, variable names and the
number of datapoints in particular.

CHAPTER 2. BASIC PROCEDURE 7

Figure 2.4: Data Window

Multi-dimensional data

A data array may have up to three dimensions. Simple vectors are input as described
above. If the observable has 2 or 3 dimensions, it must be input as a single, row-major
column. Thus, the column for x[10][3][2] (length = 10*3*2) would be entered in the order
given by the output of the following pseudocode:

for (r = 1;r <= 10;r++)
for (c = 1;c <= 3;c++)

for (d = 1;d <= 2;d++)
Print(x[r][c][d]);

If there are 1-dimensional observables in addition to x[10][3][2], they would have
to be input as column vectors of length = 10 = (x rows) followed enough asterisks to
make all data columns of equal length. See Example Body where the data are input as
WtHt[247][2].

Note: With multi-dimensional data, the reserved datum NA (≡ not-available) is valid.
What effect this will have on results will depend on the model.4

2.4 Setup Options
There are two levels of Options (see Fig. 2.5). In most cases, the defaults will suffice so
nothing need be changed. The Run button will start MCMC. Cancel triggers a Restart.

4NA is stored internally as NaN = 0/0.

CHAPTER 2. BASIC PROCEDURE 8

Figure 2.5: Setup Dialog

2.4.1 Standard Options
These Options are those most likely to be changed.

Samples per walker determines the size of the final sample. Since there will be several
walkers (see Appendix C), the final sample will likely be a bit larger than expected
so that sub-processes will all generate a sub-sample of the same size in order that
the Gelman-Rubin statistic (see below) will be unbiased.

Thinning determines how many states are skipped for each trace entry (default = 9).

Marginal likelihood ON by default. Useful for model comparison (see Examples). Can
be turned off to save time.

Relabeling Enabled only when the model is one of the three built-in mixtures (see below).

2.4.2 Low-level Options
These options adjust the internal workings of MCMC as it is implemented in MacMCMC
(see Appendix C).

Walkers/parameter There must be at least two. The default (5) is a reasonable choice.

CHAPTER 2. BASIC PROCEDURE 9

Nburnin and Tburnin control the burn-in phase.

RelabelLim Enabled only when the model is one of the three built-in mixtures.

Alpha Controls the step size for proposals and must be >1. This Option is included only
for the sake of completeness; there is no reason to change it.

2.5 Run Status
The Status dialog is displayed during and after a run. Figure 2.6 shows this dialog for the
Quickstart example. The progress bar reflects all sub-processes (usually 3 or 7). The phase
of the run (Burn-in, Sampling, Refining MAP parameters, Marginal-likelihood integration,
. . .) is shown below the progress bar. All sub-processes are in the same phase at all times
(see Appendix C). A Cancel at any time aborts the run completely and executes a Restart.

Figure 2.6: Status Window (Sampling phase)

When the run is finished, the Status dialog will show a pair of trace plots (black and
red) for two selected chains (walkers) for the first of the monitored variables in the model,
indicated by Symbol (see Fig. 2.7). This is a typical MCMC trace plot and serves to
indicate whether these two chains were well mixed (as they should be). In MacMCMC,
there are many more chains than usual so there are many chances for a pair of chains to
be poorly mixed. If the model is working well, this should not happen. If mixing is poor,
then this can usually be fixed by lengthening the burn-in phase. However, if the model is
somehow inappropriate, poor mixing may be unavoidable. If, for any reason, the trace is
bad (e.g., a column is constant), this will abort the run with an error message followed by
a Restart.

CHAPTER 2. BASIC PROCEDURE 10

Figure 2.7: Status Window (Done)

The displayed symbol, and/or the pair of chains, can be changed but Reset must be
clicked for the change to take effect.

2.6 Output
When the run is finished, files report.txt and trace.txt will be saved to the folder containing
the data. The report will also be shown in a window. Figure 2.8 shows the Report window
for the Quickstart example. After the header, information is summarized for some common
quantities plus everything that was monitored during the run.

2.6.1 Trace
In this run, there were two parameters, A and B, and five walkers per parameter for a
total of ten walkers. The target sample size (given 10,000 per walker) was thus 100,000.
However, there were three sub-processes5 and 100,000 is not a multiple of three so the
final sample size was rounded up to 30 × 3334 = 100,020. Since thinning was set to 10,
there were, in fact, 1,000,200 post-burn-in iterations altogether (for 3 sub-processes with
10 walkers each). The second line of the report shows how many of the visited states
wound up in the trace. The saved trace is sorted by walker so here it contains 30 blocks of
3334 states in the order visited by the respective walkers.

The dimensions of the saved trace array are given in the first line in the trace file. The
second line in the file lists the column symbols. The rest of the file gives the trace—all

5See Status dialogs above. This number is computer-specific.

CHAPTER 2. BASIC PROCEDURE 11

Figure 2.8: Report Window

tab-delimited text. In addition to the monitored variables, the trace array also contains a
zeroth (leftmost) column giving the value of the log(posterior) for that state.6

2.6.2 Marginal Likelihood
Unless it was deselected in the Setup dialog, the log(marginal likelihood) is shown in the
third line of the report.

2.6.3 Monitored Variables
There must be at least one monitored variable. In the example shown in Figure 2.8,
there are three: two parameters, A and B, plus RSq = the weighted R-squared metric
for goodness-of-fit (where RSq = 1 is a perfect fit), computed as an Extra.

For each monitored variable, the first line reports the MAP, mean, median and mode
values as found from the corresponding marginal. Credible-interval limits are in order:
lower-99, lower-95, lower-90, . . . , upper-99. With parameters (not Extras), the Gelman-
Rubin statistic (G-R stat) for chain mixing is also reported (to three decimal places, see
pg. 45). Once again, a value of one is perfect. A good value should be less than 1.01.

6All logs, here and elsewhere, are natural logs.

CHAPTER 2. BASIC PROCEDURE 12

2.6.4 Marginals
A marginal plot is shown for the monitored variable appearing in the Status dialog (Reset
to change). Figure 2.9 shows the marginal for parameter A in the Quickstart example.

Figure 2.9: Marginal for Parameter A

This plot may be smoothed, unless the variable is discrete, and the axis labels may be
edited.7 However, axis range and/or tick marks may not be changed.

In rare cases, the plotted marginal may be offset to avoid too many digits in a tick
label (see Example MP). Of course, this can be avoided by offsetting the data. Proper data
encoding, to maximize precision, is usually a good idea.

All MacMCMC plots may be saved in PDF format (the default) or PNG format.8

7Smoothing does not change the trace in any way.
8PNG, better on webpages, is of lower (bitmap) quality.

Chapter 3

Modeling Language

EVERY MCMC application/package inputs a model, described in pseudocode, for
analyzing the data. This model is interpreted by a parser to execute computer code.
Parsers vary so any MCMC application is therefore parser-specific to some extent.

This chapter describes the MacMCMC modeling language compatible with (required by)
its parser. Please pay attention to the details since software tends to be rather fussy about
doing things in exactly the way that it expects and violating this precept is apt to give
unexpected results—something that may or may not be evident upon casual inspection.

We shall use the Quickstart (enzyme) example once again to illustrate the various parts
of a typical model. Also, some hints are provided suggesting how things might go wrong.

In addition to common distributions and functions, MacMCMC implements three built-
in mixture models. These have some special requirements and will be discussed separately.

3.1 Models
The Quickstart (enzyme) model discussed earlier was about as simple as it could be and did
not take advantage of all of the modeling expertise that one might expect. In particular, it
utilized the individual measurement errors provided in the data but it did not acknowledge
that there might be additional error due to the possibility that the formula for the rate
equation itself might be incorrect.1 Here, we shall adopt an alternate model in which this
deficiency is corrected. To this end, we shall define a new, unknown parameter, sig, to
describe this additional error. This will enable us to i) see whether we get an “improved”
goodness-of-fit (weighted R-squared closer to one) and ii) perform a model comparison to
assess whether the new model is really better (more credible) overall.

Our new model, model2, is shown in Figure 3.1. We shall explain the parts of a typical
model by going through this model section by section focusing on required syntax and
associated features. As noted earlier, all seven sections (Constants:, etc.) are required but
Extras are optional and so this section could have been empty.

1Engineers usually call this system error.

13

CHAPTER 3. MODELING LANGUAGE 14

Figure 3.1: Enzyme Model2

3.1.1 General
The parser considers each model section to be a vector of statements. Evaluation consists
of interpreting these statements in the order that they appear in the model. This must be
the same top-down order seen in the corresponding directed, acyclic graph (DAG).

Every statement must be terminated by a semicolon. For-loops must be delimited by
braces. Blank lines are ignored wherever they occur. Comments are always acceptable
and may be C++-style (as shown) or C-style.

3.1.2 Constants
This section must contain one statement with multiple definitions separated by commas.

This is the place to declare any quantity that need not be recomputed at each iteration.
At a minimum, it should define a symbol for the number of datapoints. The right-hand-side
(RHS) of a definition here may also be an expression, e.g., sqrt(2*Pi).

CHAPTER 3. MODELING LANGUAGE 15

3.1.3 Data
Data variables must always be declared as an array even if there is only one value. Their
declarations must be C-style with their corresponding dimensions, e.g. x[N][2]. In model2,
data variables are simple vectors of size N. Indexing always begins with 1 (unlike C-style)
so that MacMCMC pseudocode is consistent with the literature.2 These data declarations
must match the data-file columns exactly—symbol and dimension(s). However, the order
of declaration is arbitrary.

3.1.4 Variables
Every variable used in the model, including loop counters, must be declared here. These
variables are effectively global. Since statements are parsed sequentially, a variable may
be reused, e.g., as a temporary quantity. As in any programming language, no variable
may be reused while its value is still needed. Obviously, parameter variables should not
be reused since they are never temporary. In model2, variable err is reused with each
datapoint and ESS updated (lines 24–28).

(Hyper-)parameters must be initialized before any iteration may be computed. This is
done randomly by selecting from their priors but the latter will also have parameters unless
they are (fixed) founder nodes. Here, as always, it is essential that statements in the model
be listed in a “top-down” fashion so that all variables on the RHS of every statement will
have been given a value before being referenced. Otherwise, they will contain “garbage”
and the initial trial run executed by MacMCMC could fail. If that happens, MacMCMC
will immediately abort with an “Unknown runtime error” message.

There are two special options that may relate to a variable (or data) symbol:

• Any symbol with an underscore as the last character3 is treated as an integer. The
internal, double-precision value is rounded to the nearest integer when necessary
and in all output except mean values (see Examples Hyphens and Lizards).

• Symbols beginning with lower-case “zz” are treated as indicators and will not be
monitored regardless of what it says in the model. Also, computation of the marginal
likelihood will be disabled if there is an indicator since that would be problematical.

3.1.5 Priors
Every parameter and hyper-parameter must have exactly one prior. In model2, there are
three prior statements (lines 13–15). These are stochastic relationships, described with
a tilde instead of an equals sign.4 The Priors section may also include any deterministic
relationships (equations) required or, indeed, anything that need not be recomputed with
each datapoint.

2See, however, Appendix C.
3deleted from plots
4The <- symbol may be substituted for an equals sign (common in the literature).

CHAPTER 3. MODELING LANGUAGE 16

3.1.6 Likelihood
Unless there is just one datapoint, the likelihood will consist of a for-loop with syntax as
shown in lines 18–21. In some cases, the data may be sorted in some fashion and the
likelihood loop split into pieces accordingly (see Example FishCount).

Occasionally, an entire vector must be referenced. The MacMCMC syntax for the
entire mu[N] vector is mu[] (see Example Body). Note, however, that this syntax is valid
only for the rightmost dimension. That is, x[][1] is not valid.

3.1.7 Extras
This section may be empty and anything computed here could alternatively be computed
in post-processing provided that all needed variables have been monitored and, therefore,
have been saved in the trace.

Extras are computed at the end of an iteration after all needed quantities are known. In
this example, we compute the value of (weighted) R-squared, RSq, at each state in order
to assess goodness-of-fit.

3.1.8 Monitored
There must be a least one monitored variable (parameter or Extra) and it must not be
constant in the trace. Any constant column in the trace will abort the run.5

In model2, four unknowns are monitored. They will appear in the trace, to the right
of logPosterior, and in the Status sub-menu in alphabetical order. If an entire vector of k
unknowns is monitored, e.g., p[], the trace will list p[1], p[2], . . . , p[k].6

3.1.9 Results for the Enzyme Example
Numerical results for monitored parameters for the original Quickstart example, model1,
and the improved model2 (both with default options) are given in Table 3.1 and Table 3.2,
respectively. The reported values were those for the runs done for this documentation. If
you rerun these examples, the report will contain slightly different values due to (expected)
MCMC noise which can be reduced by generating a larger sample.

Figure 3.2 shows the marginal for model2 parameter sig. This plot is very different
from the (HalfNormal) prior for sig indicating that there was enough information in the
data to say something useful about this parameter.

The R-squared metric compares the model to the data using the total distance-squared
between the model curve and the datapoints. In this case, model2 is better. Nevertheless,
such simplistic approaches to model comparison are sub-optimal. The mathematically
preferred way to compare two models is via their relative marginal likelihood. [6, pg. 111]

5The trace will have been saved by this time, however.
6Trace files can get very large.

CHAPTER 3. MODELING LANGUAGE 17

Table 3.1: Results for model1

Unknown Estimate 95% Credible Interval
MAP Mean Lower Limit Upper Limit

A 74.3387 74.9514 68.9934 81.8849
B 29.8825 30.5725 23.8104 37.3729

RSq 0.925168 0.920439 0.910864 0.925228

Table 3.2: Results for model2

Unknown Estimate 95% Credible Interval
MAP Mean Lower Limit Upper Limit

A 76.4444 78.0646 66.9975 89.9513
B 33.3419 35.5137 23.3249 49.0680
sig 2.70553 3.41427 1.40108 5.77610

RSq 0.970641 0.970092 0.949538 0.988485

Figure 3.2: Marginal for Parameter sig

This permits computation of the probability that one model is better (more credible) than
another based on the full posterior whatever the model forms or the number of parameters.

Here, the log(marginal likelihood) values for model1 and model2 are −52.3619 and
−47.2738, resp. Since the value for model2 is the larger, it is truly the better model. The

CHAPTER 3. MODELING LANGUAGE 18

complete computation is given below, probability being computed from the odds.

odds model2 better ≡ oddsM2 = exp(−47.2738− (−52.3619)) = 162.082 (3.1)

Prob(model2 better) =
oddsM2

1 + oddsM2
= 0.99387 (3.2)

Therefore, by this state-of-the-art Bayesian technique, the probability that model2 is better
than model1 is more than 99 percent.7

Note that there is always a penalty for adding a parameter to a model (i.e., enlarging
the parameter space). Other things being equal, log(marginal likelihood) will decrease
with each added parameter. Here, the benefit of incorporating model error outweighs the
penalty of adding parameter sig.

Finally, the plot in Figure 3.3 shows how the two models compare to the data. This
plot uses mean parameter estimates from each report.

� �� ��� ��� ���
�

��

��

��

��

����

��
��

Model1

Model2

Figure 3.3: Model vs. Data: With and Without Model Error

3.2 Mixtures
Discrete mixtures consist of a weighted combination of distributions, the weights being
positive and summing to one. One can always add a mixture distribution to a model “by

7This computation should vary very little from run to run.

CHAPTER 3. MODELING LANGUAGE 19

hand” but MacMCMC implements three common mixtures as part of its built-in repertoire.
These are mixtures of Normal, BivariateNormal and Poisson (see Appendix A.3).

Note: In MacMCMC, one of these three may be employed as a likelihood only, never
as a prior. Also, there can be at most one built-in mixture in the model.

Built-in mixtures have special requirements in the modeling language, as follows:

• The arguments for the mixture components must be entered as full vectors except
for the final argument.

• The final argument must be the (constant) number of components (greater than one).

• The Monitored section must contain all argument vectors except the weight vector.
No other monitored variables are allowed.

All of these are illustrated in Example Salaries as shown in Figure 3.4. Note that good
results for a homogeneous (same form for all components) mixture such as this requires a
lot of data especially when there is significant overlap between components.

Figure 3.4: Salaries: Mixture Model

CHAPTER 3. MODELING LANGUAGE 20

3.2.1 Relabeling
Homogeneous mixtures are susceptible to label switching. If the component labels (here,
1 and 2) are permuted, the posterior value is unchanged so component labels are inherently
ambiguous. This problem is unavoidable and affects both the run options8 and the output.

The default is to try to correct this problem by relabeling the trace columns (see Setup
dialog and Appendix C). This is much easier said than done! The number of attempts
(default = 30) is specified with the low-level option, RelabelLim. With overlapping data,
relabeling is problematical since some points are ill-defined by definition. It is always
difficult in any case.

When relabeling is in effect, there will be two additional output files as well as a
change to the report. One new output file is traceRL.txt which is the relabeled trace. The
report is based on the contents of this file, not the original trace.txt. Another new output
is probAssign.txt. This file contains one row for each datum and one column for each
component. The values listed are the posterior probabilities that datum[i] comes from
component[k]. Finally, the report will not contain a value for log(marginal likelihood)
since this cannot be computed in the absence of valid labels.9 The last line in the report
contains posterior estimates for the weight of each component.

3.2.2 Results for the Salaries Example
Figure 3.5 shows the relabeled model compared to the data.10 The (weighted) individual
components are shown as dashed curves; the mixture PDF is the solid curve.

Numerical results for a typical run are presented in Table 3.3. The values listed are
based on the relabeled trace which, as noted, is unlikely to be 100-percent correct.

Table 3.3: Results for Salaries

Unknown Estimate 95% Credible Interval
MAP Mean Lower Limit Upper Limit

mean[1] 481.942 483.159 460.562 507.353
sigma[1] 91.7212 92.0972 83.2677 100.836

wt[1] — 0.475716 — —
mean[2] 369.992 370.767 361.478 379.995
sigma[2] 53.3872 53.9432 47.852 60.081

wt[2] — 0.524284 — —

8disabled when not appropriate
9This option is disabled for built-in mixtures.

10another Mathematica+SetAxes plot

CHAPTER 3. MODELING LANGUAGE 21

��� ��� ��� ��� ��� ��� ��� ���
�

�����

�����

�����

�����

�����

�����

������/���

�
�
�

N = 1,161

Figure 3.5: Salaries: Data and Model (mean estimates)

3.3 What Might Go Wrong?
There are many things that can go wrong in an MCMC run. Some of them will be caught
by the parser and some will be evident in the marginals and/or the trace plots. In general,
there are several things that must be kept in mind whenever a model is being formulated.
The list below is not comprehensive but it does offer some useful hints.

• Check distributions and functions to make sure that they agree with their MacMCMC
definitions (Appendix A). Such definitions often differ in the literature. Also, check
the order in which their arguments are supposed to appear.

• Do not model discrete quantities as continuous or vice versa (see sect. 3.1.4).

• Check that every variable is declared in the Variables block, that its dimensions are
correct and that subsequent indices are compatible everywhere. MacMCMC does
not check array bounds. This is not a syntax error and will not be caught!

Violating array bounds is a common mistake and will usually crash any program.
If MacMCMC crashes (does not Quit normally), the MacMCMC M2C2 processes
will not terminate. If this happens, the easiest fix is to run MacMCMC and then Quit
immediately. The absence of MacMCMC M2C2 processes can be verified using
/Applications/Utilities/Activity Monitor.

• Check that every variable, apart from for-loop counters, appears on the LHS of a

CHAPTER 3. MODELING LANGUAGE 22

statement before it ever appears on the RHS of a statement. Variables must be given
a valid value somehow and MacMCMC processes model statements in the order in
which they appear in the model.

• Check that any reused variable is “out of scope” before it is used again.

• Make sure that every (hyper-)parameter has exactly one prior.

• Check that variables that should be normalized are normalized and those that should
be positive cannot be otherwise at any iteration.

• Make sure that priors for parameters of bounded likelihoods never contradict the
data. Therefore, a bounded likelihood requires prior knowledge of the theoretical
bounds. Such likelihoods are sometimes problematical with respect to convergence
and/or integration.

• Data variables may be used only in a likelihood statement. Do not use some data
to help define an informative prior then re-use the same data in the run. To do so
invalidates the MCMC algorithm, and Bayesian inference in general, even if the
program appears to execute without visible error.

If necessary, draw a random sub-sample of the dataset and use that in exploratory
analysis but do not re-use it thereafter.

• Make sure that the child-parent relationship between all parameters and priors is
maintained throughout the entire model. Every valid MCMC model must always
have a directed, acyclic graph (DAG). It cannot have any “loops” in it, however
indirect. Otherwise, a “child” becomes its own “ancestor” and MCMC will fail.

• Note that posteriors may have multiple (even false) local optima. Also, MacMCMC
utilizes many independent walkers (see Appendix C). If a prior is “too vague”, then
a walker might get “caught” in a false local optimum giving very poor results.

• Relabeling can fail (be incomplete). If that happens, it is worth trying again, perhaps
with a longer burn-in.

• Finally, if you are new to MCMC analyses, set MacMCMC aside until you have read
the ebook cited on page v. Study the models in that book very carefully. Also, try
out the Examples supplied with this package and summarized on page 48.

https://en.wikipedia.org/wiki/Directed_acyclic_graph

Chapter 4

Goodness-of-fit

NO data analysis is really complete unless/until it is demonstrated that the model
used describes the data. By definition, a good model should be able to substitute
for the data—to answer questions that could have been answered by the input data

or by future data. If a model does not describe the input dataset, then it is not a model for
that dataset. Therefore, after an MCMC run has finished, one should perform some sort of
goodness-of-fit test to compare the inferred model to the data.

Comparing model to data can be done in many ways since the data are given and the
model is implicit in the MCMC trace. How one makes this comparison is limited only
by the expertise of the analyst. MacMCMC provides some very basic functionality to
aid in this process. This is not the primary purpose of MacMCMC and there are a few
limitations. Nevertheless, this functionality should assist in making a judgment regarding
goodness-of-fit in most cases. The general procedure is described below followed by three
examples.

4.1 General Procedure
Posterior-predictive techniques provide what is arguably the best approach to goodness-of-
fit testing. [2, sect. 6.3] This capability was added in MacMCMC (version 1.3) but had to
be compatible with everything already present. For this reason, the addition was achieved
with an optional Goodness: section for the MacMCMC model plus three dummy variables
(symbols): gdnsX, gdnsX and gdnsY. These variables are pre-defined and intended solely
for goodness-of-fit testing; they should not be used for anything else.

The Goodness: section, if present, must contain a single statement summarizing the
relationship between the model used and the data. This target relationship must be a simple
equation or distribution; more complicated models (e.g., logistic regression) will require
more elaborate testing. For subsequent 2-D plotting, the data variables must be referenced
in the model using the dummy symbols above and all non-constant symbols on the RHS of
the target relationship must appear in the trace which means that they must be an uncertain
parameter or be monitored (or both). Currently, MacMCMC has little checking capability

23

https://en.wikipedia.org/wiki/Logistic_regression

CHAPTER 4. GOODNESS-OF-FIT 24

in this regard. The examples below should make the possibilities clear.
There are three limitations, some due to the requirements of the MacMCMC software

and some simply graphical. The target relationship must

• Describe an equation (assumed continuous) or a univariate distribution

• Not be one of the built-in mixtures since the component weights are never monitored
(see sect. 3.2)

• Not be a Generic(·) distribution (see sect. A.4) since a user-defined log(PDF) for-
mula might be incorrect or unnormalized. Also, the CDF will be unavailable to
MacMCMC.

The goodness-of-fit output will be one of three plots. For equations, this will be a
simple X–Y plot. For a distribution, the plot will be a quantile-quantile (q–q) plot, with
the data on the abscissa, if the data are continuous or a PDF histogram if they are discrete.
This plot will generate a new document which may be saved as usual.

When appropriate, goodness-of-fit is enabled (see Fig. 2.2) after the MCMC run has
finished, bringing up a dialog from which the user must specify the quantities associated
with the dummy symbols given above. The gdnsX symbol, or its discrete equivalent (with
an underscore), will always refer to the variable plotted on the abscissa. For an equation,
that means the “independent” variable. In this case, the LHS of the target relationship must
be gdnsY and this symbol must be identified accordingly. With distributions, there is only
one quantity under consideration. It must be symbolized gdnsX (or gdnsX when discrete)
and appear on the LHS of the target relationship.

4.2 Credible Interval
In MacMCMC (version 1.5+), the goodness-of-fit plot has a CredInterval95 option. This
option functions independently of the Mean/MAP choices (see below). When checked, the
95-percent credible interval band for predicted y-values is shown in light gray. This option
is disabled for equations when there are fewer than four points and, with distributions,
when there are fewer than two points. The computation of this credible interval band is
straightforward but requires a lot of work. For details, see Appendix C.

4.3 Goodness-of-fit Examples
Here, we present four examples described as follows:

Daytime an equation with a very small amount of measurement error

Hale-Bopp an equation with significant measurement error (plus credible interval)

https://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm

CHAPTER 4. GOODNESS-OF-FIT 25

Body Temperature a continuous distribution

Hyphens a discrete distribution

All of these are in the Examples folder (see Appendix D).

4.3.1 Daytime
The Daytime dataset consists of 43 points each being the time in between sunrise and
sunset (rounded off to the nearest minute) in Boston, Massachusetts, USA over three years.
The model is a sine wave as shown in Figure 4.1—a nonlinear, unweighted regression.

Figure 4.1: Daytime Model

In addition to priors for the sine-wave parameters, there is an additional prior for the
modeling error variance, procVar, to be combined with the quantization error, qVar, since
the times have been rounded off. Total error, sigma, is taken to be the RMS value of these
two errors as shown in line 19. The target relationship described above is in line 32.

https://en.wikipedia.org/wiki/Quantization_(signal_processing)
https://en.wikipedia.org/wiki/Root_mean_square

CHAPTER 4. GOODNESS-OF-FIT 26

When goodness-of-fit is selected, a dialog appears so that the user can specify the
identity of the dummy variables. The result of this specification is shown in Figure 4.2.
The independent variable is day and the dependent variable is daytime just as given in the
model and the data file.

Figure 4.2: Goodness Dialog for Daytime Example

Since the target relationship is an equation, goodness-of-fit will be displayed as an
X–Y plot. Here, the plot appears as shown in Figure 4.3 (model shown in gray).

Figure 4.3: Goodness-of-fit for Daytime Example

Mean parameters are used for this plot by default but MAP parameters may be used

CHAPTER 4. GOODNESS-OF-FIT 27

instead as the radio buttons suggest. As with marginal plots (e.g., Fig. 3.2), the axes may
be relabeled and the plot saved to a file. The tick marks cannot be changed.

It should be apparent that this model is a very good fit to the data even though it is only
approximately correct. The report gave a mean value for sigma of just 4.5 minutes.

4.3.2 Hale-Bopp
The data for this analysis are measurements of the rate of release of cyanide radical (CN)
from comet Hale-Bopp in units proportional to molecules/second as a function of distance
from the Sun in astronomical units (AU). [8] This analysis is a weighted regression with
a lot of measurement error. The model is shown in Figure 4.4. The R-squared metric was
computed as an Extra.

Figure 4.4: Hale-Bopp Model

The goodness-of-fit plot (plus credible interval) is shown in Figure 4.5.

CHAPTER 4. GOODNESS-OF-FIT 28

Figure 4.5: Goodness-of-fit for Hale-Bopp Example

Here, the credible interval is quite large, as expected given the experimental error. In
the Daytime example, it was so small that it was almost invisible.

4.3.3 Body Temperature
This example illustrates the goodness-of-fit procedure when the data are described by a
continuous distribution. The data consist of 65 measurements of normal body temperature
for adult males. [9] We shall assume that they are normally distributed as described by the
model in Figure 4.6.

The dialog box is slightly different for a distribution since there is only one observed
quantity in the target relationship (see Fig. 4.7). The output in this case is the q–q plot
shown in Figure 4.8. A perfect result (shown in gray) would be the straight line f(x) = x.
The result here is good but not great (a judgment learned through experience).

CHAPTER 4. GOODNESS-OF-FIT 29

Figure 4.6: Body-temperature Model

Figure 4.7: Goodness Dialog for Body-temperature Example

CHAPTER 4. GOODNESS-OF-FIT 30

Figure 4.8: Goodness-of-fit for Body-temperature Example

4.3.4 Hyphens
Our final example is a distribution with discrete data. Here, the data are 378 points each of
which is the count of the number of lines on each page of a book I was reading that ended
with a hyphen. The counts ranged from zero to eight and I thought this might make a good
example of a Poisson distribution so that is the model used here (see Fig. 4.9).

The dialog is the same as in the previous example except for the name of the discrete
variable, hpp . The Poisson parameter, lambda, is also the mean of that distribution. The
report gave a mean value for lambda of 2.7 (out of an average of 18 lines per page).1

There is no theoretical reason why these data must be Poisson but the goodness-of-fit
plot (Fig. 4.10, with model shown in gray) is not bad for a one-parameter model. With
discrete data, a q–q plot is not appropriate so a PDF histogram is output instead.

In this model, predictions are made for the number of terminal hyphens on a page.
These predictions are declared here as a discrete vector, pred [9], computed as an Extra in
lines 21–24 and, of course, monitored. Note the syntax for monitoring these predictions.
pred [0] is defined, contrary to MCMC convention, but the symb[] syntax always assumes
1-based vectors.

1The data average is also 2.7.

CHAPTER 4. GOODNESS-OF-FIT 31

Figure 4.9: Hyphens Model

With lambda = 2.7, this model predicts pred [0] = N exp(−2.7) = 25.4 or 25 (after
rounding). The report gave a mean prediction of 25.3 with a 95-percent credible interval
of 21–29.2 Figure 4.10 indicates that the observed zero count (20) was smaller than this
prediction. Figure 4.11 shows the full marginals for pred [0] and the mode, pred [2].

2Note that a MacMCMC report does not round off mean values.

CHAPTER 4. GOODNESS-OF-FIT 32

Figure 4.10: Goodness-of-fit for Hyphens Example

CHAPTER 4. GOODNESS-OF-FIT 33

Figure 4.11: Marginals for Zero-count and Two-count

Appendix A

Distributions

This Appendix lists the definitions of all distributions defined in MacMCMC. Users are
cautioned to examine the name and parameter list carefully since alternate definitions exist
for many of them. Parameters must be input in the order shown regardless of the (user-
defined) symbol. See Examples folder for sample usage where noted.

A.1 Continuous
Location parameters may be bounded. Scale parameters must be > 0 and shape > 0
unless otherwise noted. To avoid overflow, do not allow shape parameters to exceed 100.
All univariate PDFs have units that are the reciprocal of the unit (if any) of the variate.

Beta

Beta(α, β) =
1

B(α, β)
xα−1(1− x)β−1 ; 0 < x < 1

where B(α, β) is the beta function and α, β are shape parameters.

Exponential

Exponential(λ) =
1

λ
exp

(
−x

λ

)
;x ≥ 0

where λ = scale.

Gamma

Gamma(α, β) =
xα−1

Γ(α) βα
exp

(
−x

β

)
;x > 0

where α = shape, β = scale and Γ(·) is the (complete) gamma function.

34

https://en.wikipedia.org/wiki/Beta_function
https://en.wikipedia.org/wiki/gamma_function

APPENDIX A. DISTRIBUTIONS 35

HalfNormal

HalfNormal(s) =
1

s

√
2

π
exp

[
− x2

2 s2

]
; 0 ≤ x < ∞

where s = scale (but not the standard deviation).

Jeffreys
Jeffreys is Uniform in log space.

Jeffreys(a, b) =
1

x log(b/a)
; 0 < a ≤ x ≤ b

Laplace

Laplace(µ, s) =
1

2 s
exp

(
−|x− µ|

s

)
;−∞ < x < ∞

where µ = mean and s = scale.

Logistic

Logistic(µ, s) =
1

s
exp

(
−x− µ

s

)[
1 + exp

(
−x− µ

s

)]−2

;−∞ < x < ∞

where µ = mean and s = scale.

LogNormal

LogNormal(µ, σ) =
1

x σ
√
2 π

exp

[
−(log(x)− µ)2

2σ2

]
; 0 < x < ∞

where µ = mean (location) and σ = standard deviation (scale) in log space.

ModifiedJeffreys
This is the same as Jeffreys but with a Uniform distribution when x ≤ a.

ModifiedJeffreys(a, b) =
1

(x+ a) log((a+ b)/a)
; 0 ≤ x, 0 < a < b

Normal

Normal(µ, σ) =
1

σ
√
2 π

exp

[
−(x− µ)2

2σ2

]
;−∞ < x < ∞

where µ = mean (location) and σ = standard deviation (scale).

APPENDIX A. DISTRIBUTIONS 36

Pareto

Pareto(s , α) =
αsα

xα+1
; 0 < s ≤ x

where s = scale (also lower bound) and α = shape.

SkewNormal

SkewNormal(ξ, s , α) =
2

s
√
2π

exp

(
−z2

2

)
Φ(α z) ;−∞ < x < ∞

where z = (x−ξ)/s, α = shape and Φ(·) is the standard Normal CDF. Right-skewed when
shape > 0; left-skewed when shape < 0.

StudentT

StudentT (µ, s , ν) =
Γ((ν + 1)/2)

Γ(ν/2) s
√
π ν

(
1 +

z2

ν

)− ν+1
2

;−∞ < x < ∞

where z = (x − µ)/s, ν = shape > 0 (not necessarily an integer). Note: If ν = 1, this
reduces to the Cauchy distribution which has no finite moments!

Triangular
Triangular is bounded between a and b, with mode = c (which may be a bound).

Triangular(a, b, c) =


2 (x− a)

(b− a)(c− a)
; a ≤ x ≤ c

2 (b− x)

(b− a)(b− c)
; c < x ≤ b

Uniform

Uniform(a, b) =
1

b− a
; a ≤ x ≤ b

UniformHW
UniformHW (µ, δ) = Uniform(µ− δ, µ+ δ) ; δ ≡ half-width > 0

Weibull

Weibull(k , λ) =
k

λ

(x
λ

)k−1

exp

[
−
(x
λ

)k
]

; 0 < x < ∞

for k (shape) and λ (scale).

https://en.wikipedia.org/wiki/Cauchy_distribution

APPENDIX A. DISTRIBUTIONS 37

BivariateNormal
This distribution is implemented for likelihoods only; it may not be used as a prior. It
returns a vector. See Example Body.

BivariateNormal(µx , µy , σx , σy , ρ)[] =

1

2πσxσy

√
1− ρ2

exp

[
−
z2x + z2y − 2 ρzxzy

2 (1− ρ2)

]
;−∞ < zx, zy < ∞

where zx = (x− µx)/σx (and similarly for zy); −1 ≤ ρ ≤ 1 is the correlation coefficient.

A.2 Discrete
Distributions that are special cases of Multinomial have p or p[] as the first argument
unlike many literature definitions. Multinomial and Categorical distributions may have p[]
indexed from zero. However, p[0], if Monitored, must be specified separately.

Bernoulli

Bernoulli(p) =

{
p ; if x = 1 (True)

1− p ; if x = 0 (False)

where x ∈ {0, 1} and p = Prob(True).

Binomial
For MCMC, p and n cannot both be completely unknown.

Binomial(p, n) =

(
n

x

)
px(1− p)n−x ;x = 0, 1, 2, . . .

where
(
n
x

)
= n!

x!(n−x)!
is a binomial coefficient = the number of ways to choose x out of n.

Categorical

Categorical(p[]) =

{
pi ;x = i

0 ; x = invalid index

DiscreteUniform

DiscreteUniform(a, b) =
1

b− a+ 1
;x ∈ {a, a+ 1, . . . , b− 1, b}

https://en.wikipedia.org/wiki/Binomial_coefficient

APPENDIX A. DISTRIBUTIONS 38

Geometric
Geometric(p) = p (1− p)x ;x = 0, 1, 2, . . .

Multinomial
This distribution is implemented for likelihoods only; it may not be used as a prior.
For MCMC, values of n must not be completely unknown.

Multinomial(p[], n) =
n!

n0!n1! · · ·nk!
px0
0 px1

1 · · · pxk
k ;x = 0, 1, 2, . . .

NegativeBinomial
For MCMC, p and n cannot both be completely unknown.

NegativeBinomial(p, n) =

(
n+ x− 1

n− 1

)
pn(1− p)x ;x = 0, 1, 2, . . .

In this form, x is the number of “failures” prior to observing the nth “success” and where
Prob(success) = p. This form permits x to have all integral values starting with zero.

Poisson

Poisson(λ) =
λx

x!
exp(−λ) ;x = 0, 1, 2, . . .

where λ > 0 is the mean (and the variance).

A.3 Mixtures
Built-in (homogeneous) mixtures require very special handling. See Section 3.2. In the
cases below, w[] is a vector of weights and nc is the number of components. Weights must
be > 0 and total one. All other parameters are as defined above.

These mixtures are implemented for likelihoods only; they may not be used as priors.

NormalMixture

NormalMixture(µ[], σ[],w [], nc) =
nc∑
k=1

w[k]Normal(µ, σ)[k]

PoissonMixture

PoissonMixture(λ[],w [], nc) =
nc∑
k=1

w[k]Poisson(λ)[k]

APPENDIX A. DISTRIBUTIONS 39

BivariateNormalMixture
This distribution returns a vector. See Example Iris.

BivariateNormalMixture(µx [], µy [], σx [], σy [], ρ[],w [], nc)[] =
nc∑
k=1

w[k]BivariateNormal(µx , µy , σx , σy , ρ)[k]

A.4 Generic
This distribution is meant to handle distributions not otherwise implemented.

Generic(expr , lb, ub) = user-defined

The first argument, expr , is the expression for the (natural) log of the PDF (assumed
correct and normalized).

lb, ub are meant to be reasonable bounds for initialization purposes since MacMCMC
will not know how to draw a sample from a Generic distribution. Instead, it will sample a
Uniform(lb, ub) distribution.

See Example Gumbel and Section C.2.3.

Appendix B

Functions

This Appendix lists the definitions of all operators and functions known to the MacMCMC
parser. Most of them should be familiar.

Study the examples provided in this package and in the associated ebook for proper
usage.

B.1 Operators

B.1.1 Arithmetic
+ plus

- minus

* times

/ divide

ˆ exponentiation

= equals

<- equals

˜ is distributed as

B.1.2 Logical
All of these return 1 (true) or 0 (false) which can be used as numbers.

< less than

<= less than or equals

40

https://causascientia.org/math_stat/DataUnkInf.html

APPENDIX B. FUNCTIONS 41

> greater than

>= greater than or equals

== is equal to

&& and

|| or

B.2 Functions
exp exponential

log natural logarithm

sin sine of angle (in radians)

cos cosine of angle (in radians)

tan tangent of angle (in radians)

asin arcsine of angle (in radians → [−π/2, π/2])

acos arccosine of angle (in radians → [0π])

atan arctangent of angle (in radians → [−π/2, π/2])

atan2(y, x) arctangent of angle (y/x → [−π, π])

abs absolute value

mod(y, x) y mod x

min of two expressions

max of two expressions

sqrt square root

rnd round to nearest integer

logFactorial natural logarithm of N! where N is an integer ≥ 0

invLogit inverse logit, returning probability p

phi standard Normal CDF

sum of 1-D vector, from 1 to length

mean of 1-D vector, from 1 to length

https://en.wikipedia.org/wiki/Logit

APPENDIX B. FUNCTIONS 42

B.3 Reserved Constants
Pi 3.14159. . .

Inf infinity

NA datum not available (in a multi-dimensional array)

Appendix C

Technical Details

The material in this Appendix is provided in order that knowledgeable users can assess the
credibility of some internal details of MacMCMC. Techniques are all based on existing art
and references are cited where appropriate.

C.1 Software
MacMCMC and its sub-process, MacMCMC M2C2, were developed in Xcode (v14.1).
Languages used include C, C++, Objective-C, Objective-C++, Flex and Bison. The top-
level, controlling process is MacMCMC; CPU-intensive computations are passed to one
of an array of MacMCMC M2C2 processes. MacMCMC is an NSDocument application;
MacMCMC M2C2 is a headless console tool.

C.2 MCMC

C.2.1 Variables
Internally, all data and non-scalar variables are constructed as arrays of size sz+1 so that
indices [1. . . sz] will be valid. Therefore, a zeroth element always exists even though
indices are assumed to start at 1. This zeroth element can be used in a model (e.g., with
Categorical distributions) provided all else is consistent but this is must be done with care.
It is safest to assume that there is no zeroth element.

All array elements are initialized to −∞. If a referenced value is not overwritten by
the model, this (garbage) value will cause the initial trial run to fail.

C.2.2 Algorithm
MacMCMC utilizes ensemble MCMC exclusively—essentially a parallelized version of
the algorithm of Goodman and Weare. [4] The number of walkers in an ensemble depends

43

APPENDIX C. TECHNICAL DETAILS 44

on the number of parameters with the default being five walkers per parameter.
Parallelization is achieved by partitioning the sample, not the walkers. Each parallel

MacMCMC M2C2 process creates a full complement of walkers to produce a subset of
the total sample with each walker (chain) randomly initialized by selecting variates from
the relevant priors. The final sample (trace) is the union of states visited by all walkers.
Thinned states are not saved in the trace. Thinning default = 10.

This proliferation of chains can result in excessive memory requirements when the
number of parameters becomes large. Available memory is checked in advance of a run.

In each MacMCMC M2C2 process, at each iteration, proposals are made for all model
parameters for every walker. Updating of all walkers is thereafter executed synchronously.

C.2.3 Initialization
Variables are initialized by drawing random variates from their modeled distribution with
parameters already determined from ancestor nodes. The latter must have already been
initialized (in a previous model statement). A single draw is used for discrete variables
and the average of five draws for continuous variables.

C.2.4 Burn-in
Burn-in must be complete before any sampling can be done. Burn-in parameters, Nburnin
and Tburnin, may be chosen from the Low-level Setup dialog.

Burn-in continues for Nburnin iterations or until 90 percent of the walkers in a sub-
process have moved at least Tburnin times, whichever is fewer.

C.2.5 Credible Intervals
Credible intervals are highest-posterior-density (HPD) intervals. Each is computed by
sorting its trace column (low to high) then examining the values bounding every window
of states containing p percent of the trace. The shortest range of values found is reported
as the p-percent credible interval.

This procedure is appropriate mainly for unimodal marginals.
An extended set of credible intervals is used in the marginal -ikelihood integration (see

below).

C.2.6 Mode
The mode of a continuous variable is estimated by splitting the sorted trace column into
1,000 bins and reporting the midpoint of the tallest bin as the mode. Discrete variables
have binwidth = 1 and the tallest is reported as the mode.

APPENDIX C. TECHNICAL DETAILS 45

C.2.7 MAP parameters
In most cases, the maximum a posteriori (MAP) parameters reported are determined by
refining the best-found parameter vector using the Nelder-Mead simplex algorithm. [7]
However, if the number of unknown parameters (those with a prior) is ≥ 20 and/or there are
indicator variables, MAP parameters are those found that have the largest log(posterior).
Checking may be done by increasing the MCMC sample size (trace length).

C.2.8 Chain Quality
The only statistic reported (for parameters, not Extras) is the Gelman-Rubin statistic for
chain mixing. [3] This uses the saved trace which is sorted by chain (walker).

C.3 Marginal Likelihood
The numerical integration of the posterior, yielding the marginal (global) likelihood, is
carried out using Nested Restricted Monte Carlo Integration. [5] This procedure involves
partitioning the posterior hypervolume, restricted to that exhibited by the trace, into nested
“shells” defined, initially, by the {30, 50, 70, 90, 95, 99, 99.9, 99.99}-percent credible
intervals. Thus split, the integration of these shells is carried out in parallel and totaled to
give the marginal likelihood.

The convergence criterion is a standard error less than 0.001. If this is not achieved
with the starting shells, the tail of the posterior is split uniformly into five additional shells
and these integrated sequentially. Checking the final integral may be done by increasing
the MCMC sample size (trace length).

Numerical integration is performed using Quasi-Monte Carlo integration implemented
via Sobol sequences. Note that integration cannot be done in log space so log(posterior)
values are first offset by subtracting the MAP value of the log(posterior). This is added
back at the end and log(marginal likelihood) reported to three decimal places which is
more than sufficient for model-comparison purposes.

Computation of the marginal likelihood is enabled by default but can be disabled. It is
always disabled for built-in mixtures since these are subject to label switching and correct
weights are unavailable.

C.4 Mixture Relabeling
If the model likelihood is one of the built-in homogeneous mixtures (pg. 38), MacMCMC
will (by default) attempt to undo any label switching and restore a correct set of marginals.
The algorithm employed is NORMLH which utilizes the trace alone and is otherwise
ignorant of the model. [10] Like all such relabeling algorithms, it is not perfect but appears

https://en.wikipedia.org/wiki/Quasi-Monte_Carlo_method
https://en.wikipedia.org/wiki/Sobol_sequence

APPENDIX C. TECHNICAL DETAILS 46

to give acceptable results in most cases. As always, components that are well-separated
will give the best results; overlapping components are inherently ambiguous.

Relabeling failures are somewhat random. If relabeling results in a warning that it was
incomplete, it is usually worth restarting the run, perhaps with a larger relabeling limit
(low-level option).

C.5 Marginal-plot Smoothing
Marginal plots for continuous monitored parameters and Extras are shown in raw form
but these plots may be smoothed. Smoothing is carried out in frequency space using
an algorithm adapted from that of Aubanel and Oldham. [1] The user interface for this
(optional) operation is rather generous, allowing oversmoothing in nearly all cases.

C.6 Goodness-of-fit Credible Intervals
These (optional) credible intervals are for predictions. The general procedure involves
determining prediction-interval limits using 1,000 random rows from the trace instead of
the entire trace. Abscissa values are determined in different ways depending on the nature
of the analysis.

• For equations, the X-range of the data is divided into 120 equal segments and the
resulting 121 values used with each of the 1,000 parameter sets to compute predicted
Y-values. The 1,000 Y-values are then used to get 121 95-percent credible intervals.
The plot is generated using a cubic-spline fit to the top and bottom of the credible-
interval band.

• With a q-q plot, the X-values are the original datapoints. This plot does not utilize a
cubic spline; it merely connects the points.

• With a histogram plot, the X-values are the bin boundaries. A credible-interval band
is constructed for each bin.

To minimize runtime, the abscissa values are distributed to available sub-processes (all
using the same trace rows).

Appendix D

Examples

47

APPENDIX D. EXAMPLES 48

Table D.1: Examples

1 Body Height (cm) vs. weight (kg) of adult men
2 Carbon-14 14C specific activity (counts/min-g) vs. age (years)
3 Daytime Daytime in Boston, MA, USA (min) vs. day number
4 Enzyme Concentration vs. rate
5 FishCount Count of fish caught
6 Gumbel US major-league baseball: best batting averages (1876-2019)
7 Hale-Bopp Cyanide radial release: rate vs. distance
8 Hyphens Count per page of line-ending hyphens
9 Iris Fischer’s iris data

10 Lizards Capture-recapture data
11 MP Historical melting point data for n-octadecane
12 NormalTemp Normal body temperature for adult males
13 Salaries College faculty (hundreds of dollars)
14 SAT Northern Viriginia, USA, schools (2014)
15 TriplePoint Data for triple point of n-nonadecane

Table D.2: Functionality vs. Examples

Functionality Example #
(or example type) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Continuous Distribution • • • • • • • •
Discrete Distribution • • •

Equation • • • •
BivariateNormal Dist. • •
Generic Distribution • • • •

Truncated Distribution •
Mixture Distribution • • •
Relabeled Mixture • •

Goodness-of-fit • • • • •
Multidimensional Input • •

Extras • • • • •

Bibliography

[1] AUBANEL, E. E., AND OLDHAM, K. B. Fourier smoothing. Byte (February 1985),
207–218.

[2] GELMAN, A., ET AL. Bayesian Data Analysis, 3rd ed. Chapman & Hall/CRC, 2014.

[3] GELMAN, A., AND RUBIN, D. B. Inference from iterative simulation using multiple
sequences. Statistical Science 7, 4 (1992), 457–472.

[4] GOODMAN, J., AND WEARE, J. Ensemble samplers with affine invariance. Com-
munications in Applied Mathematics and Computational Science 5, 1 (2010), 65–80.

[5] GREGORY, P. C., AND FISCHER, D. A. A Bayesian periodogram finds evidence for
three planets in 47 ursae majoris. MNRAS 403 (2010), 731.

[6] MCLAUGHLIN, M. P. Data, Uncertainty and Inference. 2019.

[7] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P.
Numerical Recipes, 3rd Edition: The Art of Scientific Computing. Cambridge Uni-
versity Press, 2007.

[8] RAUER, H., ET AL. Optical observations of comet Hale-Bopp (C1995 O1) at large
heliocentric distances before perihelion. Science 275 (1997), 1909.

[9] RUBENSTIEN, R. Y. Simulation and the Monte Carlo Method. John Wiley & Sons,
Inc., 1981.

[10] YAO, W., AND LINDSAY, B. G. Bayesian mixture labeling by highest posterior
density. Journal of the American Statistical Association 104 (2009), 758–767.

49

	A Word to the Wise (and others)
	1 Quickstart
	1.1 Things To Try
	1.2 System Note

	2 Basic Procedure
	2.1 Installation
	2.2 Menus
	2.3 Input
	2.4 Setup Options
	2.5 Run Status
	2.6 Output

	3 Modeling Language
	3.1 Models
	3.2 Mixtures
	3.3 What Might Go Wrong?

	4 Goodness-of-fit
	4.1 General Procedure
	4.2 Credible Interval
	4.3 Goodness-of-fit Examples

	A Distributions
	A.1 Continuous
	A.2 Discrete
	A.3 Mixtures
	A.4 Generic

	B Functions
	B.1 Operators
	B.2 Functions
	B.3 Reserved Constants

	C Technical Details
	C.1 Software
	C.2 MCMC
	C.3 Marginal Likelihood
	C.4 Mixture Relabeling
	C.5 Marginal-plot Smoothing
	C.6 Goodness-of-fit Credible Intervals

	D Examples

